Abstract |
This paper proposes a theoretical insurance model to explain well-documented loss under-reporting and to study how strategic underreporting affects insurance demand. We consider a utility-maximizing insured who purchases a deductible insurance contract and follows a barrier strategy to decide whether she should report a loss. The insurer adopts a bonus-malus system with two rate classes, and the insured will move to or stay in the more expensive class if she reports a loss. First, we fix the insurance contract (deductibles) and obtain the equilibrium reporting strategy in semi-closed form. A key result is that the equilibrium barriers in both rate classes are strictly greater than the corresponding deductibles, provided that the insured economically prefers the less expensive rate class, thereby offering a theoretical explanation to underreporting. Second, we study an optimal deductible insurance problem in which the insured strategically underreports losses to maximize her utility. We find that the equilibrium deductibles are strictly positive, suggesting that full insurance, often assumed in related literature, is not optimal. Moreover, in equilibrium, the insured underreports a positive amount of her loss. |