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An Econometric Problem

Panel Data Analysis
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1.

Data Structure: Dependent Variable y;; and Independent Variable
Xjt = (Xl,itrXZ,itr~ . "XP/”) withi=1,2,...,Nandt=1,2,...,T.

. Aim: Accurately model and estimate the relation between y;; and x; for all

cross-sections i = 1,2,...,N and time-periods t = 1,2,...,T.

. Major Benefit: Homogeneity (Blessing of Dimensionality).

. Challenge: Heterogeneity (Curse of Dimensionality).



Literature Review

Bai (2009, Econometrica)

Common factor models are widely used to capture cross-sectional dependence in

panel data sets:
Vi=x,B+er, ey =M Fitey (€]

fori=1,...,Nandt=1,...,T, where
» B is a p-dimensional unknown parameter;
» {F;} are unknown r-dimensional common factors;
» {A;} are corresponding factor loadings.
Advantages of factor models:
» heterogenous effects of common shocks;

» Appropriate flexibility.
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Literature Review

Bai (2009, Econometrica)

» Bai (2009) proposes an iterative numerical method to approximate the minimizer

of the least squares objective function:
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» Estimate § by least squares method;
> Estimate A; and F; by PCA method;
> Repeat until convergence.

> Extensions:
» Ando and Bai (2014).

» Challenges:

» Poor performance with endogenous factors (see Jiang et al., 2017).
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Literature Review

Pesaran (2006, Econometrica)

» Pesaran (2006) proposes valid proxies for F; in the following model:

Vie | _ AiT'*‘I:,‘T’YiT F e+ B 1y /
Xit Vi it

where {7;} are unknown factor loadings.
» Extensions: Chudik and Pesaran (2015).
» Challenges:

» Rank conditionr < p+1,

» No estimators for Fy, A;.
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Literature Review

Time-varying panel data models

» Limitations of time-constant slope coefficients:

> The risk of model misspecification;
> The time-variation in parameters has been well recognized in many fields:

> Silvapulle et al. (2017).
» Existing time-varying panel data models:
> Lietal (2011):
Vit = Xit By +fi + i + it ©

where B, = B(%) and f; = f(1) with i = £.
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Literature Review

Heterogeneous panel data models

» Existing heterogeneous panel data models:

> Pesaran (2006)’s random coefficient assumption:
Bi =B+
» Su et al. (2016)’s unknown group pattern:
K
=) BY1{ic G,
k=1

where K is known and fixed but Gy is unknown.

> Gao et al. (2019)’s complete heterogeneity:
Vit = Xy Bi +fir + i +ei,

where f;; = fi(1).
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Proposed Model

Our model

» We consider the following model:
Vi = Xit By + A Fi + e,

where

> x; and y; are observable;
> Bi; = Bi(Tt) is an unknown deterministic function;

> x; can be correlated with {A;, F;}.
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Outline of Contribution

1. Generality of Model: Heterogeneous and Time-varying coefficients.

2. Unified Estimation Approach: observed, unobserved or partially observed

factors.

3. Asymptotic Theory: reconcile computational elements (iteration steps) with

statistical properties.

4. Empirical Application: relation between health care expenditure and income

elasticity.
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Proposed Estimation Approach

Recall the heterogeneous model:
Vi = xi Bi(1) + A Fi + €.

The idea of iteration:
» With given F;, we can estimate §;(7) and A; by a profile method.

» With B,;(7) and A;, F; can be estimated by OLS method.
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Estimation Procedure

(1) Find an initial estimator F(®) = (1350),- . -,lA:(T[)) )T

(2) With an) and by regarding A; as known, B,(7) can be estimated by local linear
method. For T € (0,1)

t—1T 2 /t—1T
e o () o5

we have

Bm (£ A) = [1,0,] [Mi(T)Tw(r)Mi(r)]*l M; (1) W(T) [Yi 7177(”)/\1'] . (10

(3) With B,(, A;), we can estimate A; by the least squares method:

2
mlnz <ylf ztﬁ/nJrl ( ) /\T g >> . (11)

ltl

» See notation
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Estimation Procedure

We have

~ . -~ -1

A = [ET (- T - 8)F0 ] EOTa-8)T(1-S)y,  (12)
where

Si = (si(1/T) "xit, ..., si(T/T) 'xir) T,
with
si(7) = [1, 0] [M;(7) "W(T)Mi(7)] " M;(7) " W(7).

After plugging A; back into B,-(T, A;), we have

B (0) = [1,0,] [Mi(e) WoMi()] M) TW(e) [y,» ~EWR"Y] a3

1

fori=1,...,N.
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Estimation Procedure

@ With """ (1) and A"V

F§n+1) (K(nJrl)TK(nJrl))

, we can estimate F; by OLS method:

-1
A(n+1)TR¥1t+1)

.
~ 1 -~ 1
where Rgnfﬂ) (yu Xﬂﬁiw)(Tt)/---/yNt*XEtﬁg+)(Tt)) .

(5) Repeat Steps 2-4 until convergence.
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Asymptotic Properties

Assumption 1

(i-v) Regularity assumptions on weak serial and cross-sectional dependence and

kernel estimation.
(vi) Let R}(:'l) = F(") — P, For the initial estimator F(?), suppose that
T2 R = Op (6r0) and (Th)~?[W(1) R || = Op (do)
where Jr satisfies that NTh4(5%,O =0, (5}2_-,0 /h — 0 and max{N, T}‘Sg,o /h—0,as
N, T — oo.
Assumption 2

(i-iv) Regularity assumptions on positive definiteness of asymptotic covariance

matrices.

» See Assumptions
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Asymptotic Properties

Theorem 2.1 (Consistency) Under Assumption 1, as N, T — oo simultaneously,
1) N2 HK(") — A = 0y (max {do,8n7 )
(2) T-1/2 H/F\(n) — FH = Op (rnax {5}:/0,5[\]'1"}) ,

where Syt = min{+v/N, T}~ 1.
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Asymptotic Properties

Assume that
xii = gi(%) + Vir. (14)

Notations:

r,i=E {anﬂ , Zp=E [F?F?T} , Zori=E {Vz’thﬁ} , Lopi=E [VitA?T} ,

Zxi(1) = gi(1)g (T) + Eois Opi=Er—EZ,p; /1 Iy (DT ks,

Oijgs = Eleagis],  zip =F — Z)p Zyt(T)xi, Ep = Jim N” 1 Z;‘/\OAOT

Bri = Eor 05 E s, AL(T) = B3 (D) (Eupi(r) + (DAY ),

Ou(t5) =N 21 E AR (wxe], Dalts) =N ig AT 2] 0,12,

iz =

Qs(t,5) = 27 (W Kso(1) Q1 (t,5) + Qo (t,5)),
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Asymptotic Properties

Theorem 2.2 (CLT, n > 2) Let Assumptions 1 and 2 hold. Then, as N, T — oo

simultaneously,
(1) if N/T — ¢1 < oo, for any given ¢, we have
VN (B =B —bi) 2 N (Verdes, Exp),
150 w1
where Epy =X} "Ep X",
tn _ 0
bF<t) =T E (51 HQ3 s/’s]Jrl))Rl(f/s)n’
51,5250 =1 j=1

T
dr, = hm 1/(NVT)Z 1220 I riEx s (1)8i(T) i gs-

i=1s=

» See Assumptions
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Asymptotic Properties

Theorem 2.2 (CLT, n > 2) Let Assumptions 1 and 2 hold. Then, and as N,T — o

simultaneously,

(2) if T/N — ¢y < oo, for any given i, we have
VT (A =20 =) 2y A(pd
i — A —by ) — N(Veadyi, Za),
where X, ; = QF”}Z?‘JQF’},
(1) lo-lyT 4t t(n—1)
byt =T Qp Ly, ZAi (Tt)bp,t ’
=1

N
dj\,i = 1/\/N0;32;1]IA Z 0'1']',11.
j=1

» See Assumptions
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Asymptotic Properties

Theorem 2.2 (CLT, n > 2) Let Assumptions 1 and 2 hold. Then, as N, T — oo

simultaneously,

(3) for any given (i, T), we have
VTh (Bf") (1) = By(x) — ai()i2 = b1 (r)> L N (0, Z4(7),

where a;(1) = 2B/ (7)(1+0(1)), Xgi(T) = Z;(}(T)Z%/i(’f)z;(}(‘r),
o = [ uPK(u)du, and

T
by (r) = —T’l}:;{}(r)z<h*1Kt,0(T)ZX,,'(T)+AF,i)/\}L(Tt)b;(;’_l).
t=1
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Asymptotic Properties

Corollary 2.1 (CLT, n > 2) Let Assumptions 1 and 2 hold. If ¢; is both serially and

cross-sectionally uncorrelated, as N, T — co simultaneously,

0 (7R ) 05
~(n) " A
@ VT (/‘i —Az‘o‘b%")) Oz

@ VI (B (7) = Bi(x) ~ (o) ~ b1 (7)) 5 N0, ()

where L} ; = Q;}Ug and L5, (1) = vy (1)02.
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Asymptotic Properties

Define
T N T
K= N17i"13 (NT)~ E Zgi (Tf)):;(z(rf) <):‘sz0 val):‘xl(TS)gl(TS) +gz(Tf)) €10,1).
A s=1i=1

Theorem 2.3 (CLT, n — oo) Let Assumptions 1-3 hold. Suppose
max {\/N, \/T} Kn_Z(SF,O — 0.

We have
(1) If, in addition, N/T — ¢ < oo,

VN (ﬁ@ - F?) L N(Verdey, xy),
(2) If, in addition, T/N — ¢; < oo,
JT (XE’” _ A?) Dy N (Verdy, Zas),
(3) For any given 7 € (0,1),
VIR (B (1) B.(1) ~ ()i ) 2> N0, gy ().

20 /43



Asymptotic Properties

Consider the following mean-group estimator (MGE)

where wy; > 0 and Zﬁl wy,; = L.
Theorem 2.4 (CLT, MGE) Let Assumptions 1-4 hold. Suppose

mk”*zém — 0.
We have
VT (B (0) = Bu) = au(0) 2 N0 Ep), 15)
where
> INw = (Z?Ll wi,,i> 71,
- au(t) = 1 0wl (1)1 +0p(1)), B () = £, i (0)

» See Assumptions
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Discussions on initial estimators

Exogenous factor models

Step 1. First, by the local linear method:
2(0) -
B () = [1,0,] (M (OWEOM,(7))  M] (D)W(D)y: 16)

Step 2. Second, by PCA:

5 2 Ry, Ry FO =FOVyry, (17)
e 2 ® 20 T oy T .
where Ry = (R (B; (1)), -+, Rir(B; "(7r)))* with Rit(B) = yir —x; B, and Vnr,1 is

an r X r diagonal matrix with diagonal elements being the first r largest eigenvalues of

the matrix (NT) ' £, Ry;R; 2 i
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Discussions on initial estimators

Exogenous factor models

Corollary 3.1 (CLT, exogenous factor case) Let Assumptions 1.(i-v), 2-3, 5 hold.

N T n—2
max{”Th'”N}K — 0.

We have Theorem 2.3.(1-3) holds.

» See Assumptions

Suppose
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Discussions on initial estimators

Endogenous factor models

Assume that

xi = gi(1) +vie, Vie =7 B+ (18)
Step 1. First, by the local linear method:
5®) Vs @)
8" (1) = [1,0] (Mf (OW(T)M7 (7)) Mf (D)W(D)X] 19)
’ T
where §§w> (1) is the w-th element of g;(7), igw) = (xflw), e ,xf%u)) and xl(tw) is the
w-th element of x;, forw =1,2,...,p.
Step 2. Second, by PCA:
1 RWRWT ) §0) — 0
R{VR} FO = FOvyr, (20)
<NTp - 3
where R{ = (R, R(Y)), R = (R, R9)T with R being the w-th
element of Ry ; = x;; — 8i(1), and Vnr is an r X r diagonal matrix with chagonal
elements being the first r largest eigenvalues of the matrix (NTp) "' ¥/ _ R fg,w)T.
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Discussions on initial estimators

Endogenous factor models

Corollary 3.2 (CLT, endogenous factor case) Let Assumptions 1.(i-v), 2-3, 6 hold.

N T n—2
max{”Th'”N}K — 0.

We have Theorem 2.3.(1-3) holds.

» See Assumptions

Suppose
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Simulation studies

An example with exogenous factors

Example 1 Consider the following data generating process:
Yir = Xit1B1i (1) + Xir2Boi(Tt) + AigFea + AipFro + €5t

where
> (B1i(u), Bai(u)) = (sin(7tu) + cos(0.257ti), cos(7tu) + 0.5 sin(0.257i) );
> Xy =8 () + 71161 + 7i21Gr2 + it 1
> Xip = 8i(T) + ¥i1,2Ge1 + Yiz2Geo + Mir2s
> (gn(u),gn (1)) = (3cos(m(u+0.25i)),5sin(7w(u + 0.251));
> Fi1 = pr Fio11 + vF ¢ with pp, = 0.6;
> Fio = pp,Fi 12 + v, with pp, = 0.4;

> (Gt1,Gyp) ~ 1.i.d.N(0,1); the loadings and error terms: oij1 = 0.8li=il;

26 /43



Simulation studies

An example with exogenous factors

For B0 (1)

- w = %,fori: 1,2,...,N;
> hey: leave-one-out cross-validation method;
» Epanechnikov kernel is adopted.

For ff”) and )A\En),

» r =2 as given.
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Simulation studies

An example with exogenous factors

» Replication times: R = 1000 times;

» For each replication,

(B (@) ~ B ()

MH

PN 1
MSE(Bi;)) = 7

.,
Il
—_

for I =1,2, where B, (1) = N"1 YN | B;; (1) are true values.
» The second canonical correlation coefficients between {X}n)} and {A;}, {ﬂw }

and F; are computed respectively for each replication.
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Simulation studies

An example with exogenous factors

Table 1: Means and SDs of the mean squared errors for Example 4.1

o 7 0

N/T 10 20 40 80 10 20 40 80

10 0.1771 0.0845 0.0454 0.0219 0.0531 0.0185 0.0077 0.0046
01755)  (0.0343)  (0.0203)  (0.0119) 00775 (0.0135)  (0.0034)  (0.0023)

20 0.1232 0.0650 0.0172 0.0123 0.0329 0.0133 0.0041 0.0026
0.0959)  (0.0174)  (0.0079)  (0.0051) (0.0285)  (0.0075)  (0.0017)  (0.0010)

40 0.0954 0.0533 0.0154 0.0070 0.0225 0.0102 0.0036 0.0018
0.0209)  (0.0123)  (0.0053)  (0.0027) (0.0147)  (0.0038)  (0.0009)  (0.0005)

80 0.0898 0.0455 0.0167 0.0046 0.0200 0.0083 0.0037 0.0015
(0.0159)  (0.0084)  (0.0039)  (0.0017) 0.0128)  (0.0020)  (0.0006)  (0.0004)
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Simulation studies

An example with exogenous factors

sl N T=00.40) Bat (4 T0.80)
gt o5 2
3 7~ g AN
T 72 i SN
= e & N
as AN
ol A
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4

Figure 1: The simulated confidence intervals (Example 4.1)
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Simulation studies

An example with exogenous factors

Table 2: Means and SDs of the second canonical coefficients for Example 4.1

sce A £

N/T 10 20 40 80 10 20 40 80

10 03619 04877 05527  0.6042 04330 06693 08130 08736
(02266)  (02346)  (02349)  (0.2342) ©02447)  (02696)  (02218)  (0.1961)

20 04461 06297 07433 0.8059 04455 07320 08914 09432
(02570)  (02388)  (01931)  (0.1521) 02470)  (02337)  (01687)  (0.1260)

40 05667 0.8081 08985  0.9213 05041 08374 09579 09818
(02688)  (01668)  (0.0597)  (0.0440) (02410)  (01641)  (0.0446)  (0.0308)

80 06934 09178 09514  0.9638 05573 09035 09718 09890
(02491)  (00565)  (0.0213)  (0.0125) (02315 (00612)  (0.0152)  (0.0058)
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Simulation studies

An example with endogenous factors

Example 2 Consider the following data generating process:

Xitn = i1 () +vi1Fr1 + iz 1 Fr2 + it

Xito = &ia(1) +vin2Fr1 + Yi2Fr2 + M2 (21)

where (g1 (1), 8i2(u)) = (3cos(mu),5u). (v, vin2), (Fra,Fr2) and (i1, 7it,2) are
following the same DGP in Example 1.
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Simulation studies

An example with endogenous factors

Table 3: Means and SDs of the mean squared errors for Example 4.2

= 7 0
N/T 10 20 40 80 10 20 40 80
10 0.2790 0.0883 0.0511 0.0181 0.0922 0.0213 0.0093 0.0051
(05040)  (0.0414)  (0.0278)  (0.0152) (0.1979)  (0.0238)  (0.0056)  (0.0038)
20 0.1514 0.0607 0.0192 0.0087 0.0599 0.0126 0.0047 0.0024
0.1648)  (0.0257)  (0.0103)  (0.0060) (0.1353)  (0.0067)  (0.0021)  (0.0014)
40 0.1119 0.0537 0.0160 0.0045 0.0369 0.0107 0.0038 0.0015
0.0783)  (0.0148)  (0.0061)  (0.0030) (0.1087)  (0.0040)  (0.0011)  (0.0006)
80 0.0906 0.0437 0.0128 0.0035 0.0250 0.0087 0.0032 0.0012
(0.0304)  (0.0100)  (0.0038)  (0.0016) 00135 (0.0023)  (0.0007)  (0.0004)
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Simulation studies

An example with endogenous factors

() (NTH=40,40)

) INT=(80.80)

Figure 2: The simulated confidence intervals (Example 4.2)
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Simulation studies

An example with endogenous factors

Table 4: Means and SDs of the second canonical coefficients for Example 4.2

sce A £

N/T 10 20 40 80 10 20 40 80

10 04638 05178 05555  0.6054 03900 05814 07079 07652
(02444)  (02326)  (02291)  (0.2335) 02511)  (02673)  (02442)  (0.2446)

20 05328 06467 07218 07598 03888 06804 08091  0.8603
(02512)  (02188)  (01895)  (0.1788) (02284)  (02247)  (02003)  (0.1724)

40 06824 08007 08726 0.9032 04631 07906 09128 09510
(02029)  (01391)  (0.0804)  (0.0658) ©02217)  (01357)  (0.0716)  (0.0527)

80 07202 08952 09426 0.9605 05079 08532 09475 09773
(02119)  (0.091)  (0.0404)  (0.0146) (01958)  (0.0941)  (0.0410)  (0.0112)
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An empirical application in health economics

Data description

The economic relationship between health care expenditure and income is

reconsidered with the data set of OECD countries:
» The annual data is from 1971 to 2013 (T = 43) on 18 OECD countries (N = 18);
> Yj;: per capita health care expenditure (in US dollars, HEj);
» Xii1: per capita GDP (in US dollars, GDPy);
> Xji»: the proportion of population above 15 years over all population (DRl.ytmmg )
» Xj3: the proportion of population above 65 years over all population (DR%);

> Xii4: the proportion of government funding invested on health care industry in

total health care expenditure (GHE;; );

> all variables are expressed in natural logarithm.
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An empirical application in health economics

Consider the following model:

.
HE;; = B1,sGDPy + B, s DR} + B3,tDRY? + By yyGHE;; + Y Awifur e, (22)
m=1
where

> (B1,i(T), B2,i(T), B3,i(T), Ba,i(T)): unknown deterministic functions;

> (fit, ..., frt): common factors; (Ay;,...,A,): loadings.
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An empirical application in health economics

The number of factors

The criterion proposed by Bai and Ng (2002):

N T
IC(r) =log <I\}T 2 Za%) +r (%) log (min{N, T}) 23)

where € is the estimated residuals from model (22) with r factors.

Table 5: The values of IC(r) in the determination of factor number

r 1 2 3 4 5 6 7 8
IC(r) -6.6058 -6.5600 -6.5538 -6.4607 -6.4057 -6.3390 -6.2940 -6.2798
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An empirical application in health economics

39 /43
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Figure 3: The estimated elasticities and confidence intervals




An empirical application in health economics

Different groups:

» The European countries: Austria, Denmark, Finland, Germany, Iceland, Ireland,

Netherlands, Norway, Portugal, Spain, Sweden and the UK;

» Non-European countries: Australia, Canada, Japan, Korea, New Zealand and the

Us.
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An empirical application in health economics

GoP. OR,oung.
2 _ -
e Year
oR,,, GHE
= = —
N o
e

Figure 4: The estimated elasticities and confidence intervals (European OECD countries)

41 /43



An empirical application in health economics

Figure 5: The estimated elasticities and confidence intervals (Non-European OECD countries)
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An empirical application in health economics

Estimated loadings and factors

County Indox

Figure 6: The estimated loadings and factors
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Conclusions

Our contributions can be summarized as follows:

> Model:
» Time-varying regression coefficients are introduced;
> Heterogeneity is allowed.

» Method:
» A recursive method is proposed to reduce the bias;
> It can be generally used when the factors are exogenous or endogenous.
» Asymptotic properties are established for the proposed estimators,

including the factors and loadings.

» Empirical results: evidence of time-variation and heterogeneity in income

elasticity of health care expenditure.
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Thank You
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Appendix

Notation

Define

» W(1) = diag (K(XHT), ..., K(THTD))

»>
<1 1-1T5

X h x|
Mo-| :ooc | @
xr L7 i Xt



Appendix

Notation

Define

y: = (yu,yzt,.--,ym)T, Xt = (Xlt/XZt,anNt)

T ~ -~ o~ ~ \ I
V= (V],Vz,...,VN) ; Ft = (Plt,th,...,Frt) ’
~ - o~ ~\T T
F= (FlrFZ/-n/FT) , & = (1,24, ENt)



Appendix

Notation

Let Wo(1) = diag (K(15E), ..., K(IFE)), W(T) = Wo(1) ® Iy, i = Myy,

Xt = xfMy and

<5T 1-tT3T
Xq ™ X1

<5T T—1T3T
Xt Th XT




Appendix

Notation
Define
1—1T T—=T
yi= (- yir) ', W) = (K( Th >K< Th ))
and
1—1T
X1 X
M; =
X T




Appendix

Notation

Notations:
> Oy(t,s) = Z 0 (h Koo () (1,5) + Qa(t,5)),
» Af(w) = I (w) ():X,A/,-(rt) +E [xi] A,T),
> Ap; = Zv,FQEil Zop Exi(t) =E [Xit/\iT]



Appendix

Assumptions

Assumption 1.

(@)

(i)
(iif)

a-mixing conditions on panel data are assumed as follows: {v, z,,F?} are strictly stationary and a-mixing

across t; Let a;;(|t — s|) represent the a-mixing coefficient between {¢;;} and {¢js}. Assume that

)% g i (’Xij(t)){s/(ufs) —O(N) and % ﬁ (ai]_(o))a/(ua) — o),
im1j=1i=1 i=1j=1

where 6 > 0 is chosen such that E [Hw,‘f||4+5]

< oo with wy; € {A?/ F),e;1, vy }. Let a(|t — s|) represent the
a-mixing coefficient between {v;;, F)} and {v;;, F{}. Assume that

a(t) = 0t™),
where 0 > (4+06)/6.

0

{e;;} are identically distributed across i with zero mean and independent of {F{, /\;),Vjs }, for any i,j,t,s.

The unknown deterministic functions {B;(7)} have continuous derivatives of up to the second order on its

support T € [0,1], and the functions {g;(7)} are uniformly bounded: max;<;<y sup,. 0] ||gi ()| < oo.
The kernel function K(-) is Lipschitz continuous with compact support on [—1,1].
As N, T — oo, the bandwidth satisfies that i — 0, max{N, T}h4 — 0 and min{N, T}h2 — o0,
Let Rg) = F(") — FO. For the initial estimator F(?), suppose that
T V2R | = 0p (6r0) and ()~ V2[W() TR || = Op (é0) s

where dp  satisfies that NTh45}23,0 —0, 15%,0 /h — 0 and max{N, T}&%ro/h —0,asN,T — co.



Appendix

Assumptions
Notation:
02 =0Ty, +2E Elenen)E[vavi |, 0%y =c? +2§2£ lenerd], o2 =E ],
0= [ Kwldu, Z,(v) =0 (o3, + g0 (7)),
G =ATE, Ha=vaA]T, of.o=0l% +2[)§25 eneir] E [F?FOT]
—”Fso / Zsz x; ( va,x+‘720gx( )8i (”))Ex,() o,F,id0

Assumption 2.
(i) Assume the following moment conditions on {S,,, Cits 62 zt}

N T T T T 2
21 thzllelzlt 1 ICovleiry ity s jig €ty )| < CNT
=lj=1h 2=1i3=lh=
N N T T T T 2
LY X X Y Y ICou(@ &y Srigfujey)l < CNT
i=1j=1t=1ty=1t3=1t4=1
N N T T T T )
LELY L Y L lce 82ty Sty S2jtz S| < ONT
1=1h=1t3=11y=

i
[§
L



Appendix

Assumptions

Assumption 2.

(ii) Assume that X, ;, Ef, Z% ;(1) and Zg ; are positive definite and oZisa positive scalar.

(iii) Suppose that |N71 YN, A0A0T — ):AH =0Op (Nfl/z) and

N
_ D
N7V2Y A% =5 N (0,ED),
i=1

for any fixed t, where both I, 22 ; are positive definite.

(iv) Let i satisfy limsupy 1o, NTH® < o, NT-(4+6")/4 _y o, NOF 70530 (log T)1*2 5 0,for 0 < 6* < &
and 6T = (6 + 5)/(4 +6)—2(1+ 9)/(2 + ), where 6 and 4 are defined in Assumption 1.
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Assumptions

Assumption 3.
LetE [A?/\?T [Vit, ..., ViT, F(l)T,. .. ,F(%T] = X, almost surely, where
£y = limy 0o NP YN A9A9T s positive definite.
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Assumptions for the heterogeneous model

Assumption 4.
(i) Assume that E [vitA?T] =E [VitF?T} = Opxr and E[A;] = 0.
(ii) Define that

75 (i, 7) L (0)h (i) Zx ) (T),

i) = Rl)ER (D80 (D (),
N N > »

Bpo(t) = lim ynavo 1) wio, (F20,7,7) + 55(0),7) ) -
i=1j=1

We assume Qp; and Zﬁrw(r) are positive-definite matrices, where Qr; is defined

in Theorem 1.
(iii) The bandwidth F satisfies that: limy 'yN,wh3 =0.
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Assumptions

Assumption 5.
(i) Assume the estimators F©) and A satisfy the following identification condition:
N~ 1A( ) ( = diagnal and T~ TFOTEO) — 1,
(i) Assume the true values F° and A satisfy the identification conditions in Assumption 5.1.
(iii) Suppose F? is conditionally uncorrelated with A vy, ., v
E[F|A%vy,...,vr] =0,.

In addition, we assume {F} A%, vy, .. ., vr} satisfies the a-mixing condition in Assumption 1.

(iv) Suppose the following moment conditions can hold:

T T T T
Y Y Y L|EEmEEE] < cr
H=16=1t3=1t4—1

N N T T T T

LYY Y Y ¥ [Elenanene]| < on

T
N
=
I
L
15
I

iy £ty ty#ty
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Assumptions

Assumption 6.

(0)

(i) Assume the estimators F(®) and y; satisfy the following identification condition:

N
N1 Z,Aylgw,ohigw,o) — diagnal and T FOTEO — L,
i=1

(w,0)

forw=1,2,...,p, where %; OT

is the w-th column of %;
(i) Assume the true values F? and A° satisfy the identification conditions in Assumption 5.1.

(iii) The unknown deterministic function g;(7) has continuous derivatives of up to the second
order on its support T € [0,1]. Assume that the loadings {v;} are deterministic and

uniformly bounded.

(iv) Suppose we have the following moment conditions:

T T T T

LLEL[emmme]] < o
N N T T T T R
LEEE L L bkl s o
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Estimated loadings and factors

Country Index

Figure 7: The estimated loadings and factors
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Bootstrapping

The details for our bootstrapping method are as follows:
Step 1. Calculate the residuals {g; } for the estimation method discussed in Section 2.

Step 2. Resample the residuals and obtain {&;}, where €}, = & and k is randomly
selected from {1,..., T}. Then the bootstrapping sample {Y} } can be generated
with {g}}.

Step 3. The bootstrapping estimator B; can be obtained using the data set {Y};}.

Step 4. Repeat Steps 2 and 3 1000 times to obtain the 90% confidence intervals.

< Return to simulations < Return to empirical
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Discussions on initial estimator: exogenous factors

PCA method to find F©:

(1) First, ignore the common factor part and estimate g, using local linear method:
~(0) -1
B (1) = [1,,0,] (M/ OWEOM(T)) M (D)W(D)y;,

fori=1,...,N.

(2) Then estimate F using the PCA method as follows:

1 ¥ =0 _ =
NT L RaiR FO =FOVyrp, (25)
i=1

.
where R3; = (Ril (350) (r1)),-- -/RiT(BiO) (TT))) and Ry (B) = ya — x;, B(11).
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Discussions on initial estimator: exogenous factors

Corollary 3.2 Under some regularity conditions and F(¥) satisfies (25),

% Hﬁ‘)) - FHlH = 0p (max{(Th) V2, N1 12}) (26)

where Hy = (NT) "L T, LA/ FTFOV L

» See Assumptions



Appendix
Discussions on initial estimator: endogenous factors
Consider the following model:
Yie =% By + A Bt ey
xit = 8i(%) + 1 Fr +1

PCA method to estimate F(©),

(1) We first estimate the g;(7) using local linear method:

(0 = 1,0 (Mf (WMD) M (W (DR @7)
where §Ew) (1) is the w-th element of g;(T), %l(w) = <x§1w), . xl(;” )) " and xf,w) is
the w-th element of x;;.

(2) Then F; can be estimated by the PCA method:
(1 ) f{(“”f{“"”> O = FOvy 8)
NTp = g 8 8

where f{é(;v) - (f{g‘i),. . .,ﬁg{&), ﬁg) = (Réf;.’l),. .. Ré l%) and R( ) is the w-th

element of Ry ;; = x;t — gi(m).
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Discussions on initial estimator: endogenous factors

Corollary 3.3 Under some regularity conditions and F(¥) satisfies (28),

% Hﬁ‘)) - FHlH = 0y (max{(Th) V2, N1 12} ), (29)

TrTH —
where Hp = NTP Ew 1 Zz 1 ')’, )'yz(W) FTF(O)VN%",Z'

» See Assumptions » Return to Estimation
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