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An Econometric Problem

Panel Data Analysis

1. Data Structure: Dependent Variable yit and Independent Variable

xit = (X1,it, X2,it, . . . , Xp,it) with i = 1, 2, . . . , N and t = 1, 2, . . . , T.

2. Aim: Accurately model and estimate the relation between yit and xit for all

cross-sections i = 1, 2, . . . , N and time-periods t = 1, 2, . . . , T.

3. Major Benefit: Homogeneity (Blessing of Dimensionality).

4. Challenge: Heterogeneity (Curse of Dimensionality).
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Literature Review
Bai (2009, Econometrica)

Common factor models are widely used to capture cross-sectional dependence in

panel data sets:

yit = x>it β + eit, eit = λ>i Ft + εit (1)

for i = 1, . . . , N and t = 1, . . . , T, where

I β is a p-dimensional unknown parameter;

I {Ft} are unknown r-dimensional common factors;

I {λi} are corresponding factor loadings.

Advantages of factor models:

I heterogenous effects of common shocks;

I Appropriate flexibility.
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Literature Review
Bai (2009, Econometrica)

I Bai (2009) proposes an iterative numerical method to approximate the minimizer

of the least squares objective function:

SSR =
N

∑
i=1

T

∑
t=1

(
yit − x>it β− λ>i Ft

)2
(2)

I Estimate β by least squares method;

I Estimate λi and Ft by PCA method;

I Repeat until convergence.

I Extensions:

I Ando and Bai (2014).

I Challenges:

I Poor performance with endogenous factors (see Jiang et al., 2017).
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Literature Review
Pesaran (2006, Econometrica)

I Pesaran (2006) proposes valid proxies for Ft in the following model: yit

xit

 =

 λ>i + β>i γ>i

γ>i

 Ft +

 εit + β>i ηit

ηit

 , (3)

where {γi} are unknown factor loadings.

I Extensions: Chudik and Pesaran (2015).

I Challenges:

I Rank condition r ≤ p + 1,

I No estimators for Ft, λi.
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Literature Review
Time-varying panel data models

I Limitations of time-constant slope coefficients:

I The risk of model misspecification;
I The time-variation in parameters has been well recognized in many fields:

I Silvapulle et al. (2017).

I Existing time-varying panel data models:

I Li et al. (2011):

yit = x>it βt + ft + αi + εit; (4)

where βt = β(τt) and ft = f (τt) with τt =
t
T .
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Literature Review
Heterogeneous panel data models

I Existing heterogeneous panel data models:

I Pesaran (2006)’s random coefficient assumption:

βi = β + ui. (5)

I Su et al. (2016)’s unknown group pattern:

βi =
K

∑
k=1

β(k)1{i ∈ Gk}, (6)

where K is known and fixed but Gk is unknown.

I Gao et al. (2019)’s complete heterogeneity:

yit = x>it βi + fit + αi + εit, (7)

where fit = fi(τt).
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Proposed Model
Our model

I We consider the following model:

yit = x>it βit + λ>i Ft + εit, (8)

where

I xit and yit are observable;

I βit = βi(τt) is an unknown deterministic function;

I xit can be correlated with {λi, Ft}.
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Outline of Contribution

1. Generality of Model: Heterogeneous and Time-varying coefficients.

2. Unified Estimation Approach: observed, unobserved or partially observed

factors.

3. Asymptotic Theory: reconcile computational elements (iteration steps) with

statistical properties.

4. Empirical Application: relation between health care expenditure and income

elasticity.
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Proposed Estimation Approach

Recall the heterogeneous model:

yit = x>it βi(τt) + λ>i Ft + εit.

The idea of iteration:

I With given Ft, we can estimate βi(τ) and λi by a profile method.

I With βi(τ) and λi, Ft can be estimated by OLS method.
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Estimation Procedure

(1) Find an initial estimator F̂(0) = (F̂(0)
1 , . . . , F̂(0)

T )>.

(2) With F̂(n)
t and by regarding λi as known, βi(τ) can be estimated by local linear

method. For τ ∈ (0, 1)

min
ai(τ),bi(τ)

T

∑
t=1

(
yit − λ>i F̂(n)

t − x>it

(
ai(τ) +

(
t− τT

Th

)
bi(τ)

))2

K
(

t− τT
Th

)
, (9)

we have

β̂
(n+1)
i (τ, λi) = [Ip, 0p]

[
Mi(τ)

>W(τ)Mi(τ)
]−1

Mi(τ)
>W(τ)

[
yi − F̂(n)λi

]
. (10)

(3) With β̂i(τ, λi), we can estimate λi by the least squares method:

min
λi

T

∑
t=1

(
yit − x>it β̂

(n+1)
i (τ, λi)− λ>i F̂(n)

t

)2

. (11)

See notation
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Estimation Procedure

We have

λ̂
(n+1)
i =

[
F̂(n)>(I− Si)

>(I− Si)F̂(n)
]−1

F̂(n)>(I− Si)
>(I− Si)yi, (12)

where

Si = (si(1/T)>xi1, . . . , si(T/T)>xiT)
>,

with

si(τ) = [Ip, 0p][Mi(τ)
>W(τ)Mi(τ)]

−1Mi(τ)
>W(τ).

After plugging λ̂i back into β̂i(τ, λi), we have

β̂
(n+1)
i (τ) = [Ip, 0p]

[
Mi(τ)

>W(τ)Mi(τ)
]−1

Mi(τ)
>W(τ)

[
yi − F̂(n)λ̂

(n+1)
i

]
(13)

for i = 1, . . . , N.
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Estimation Procedure

(4) With β̂
(n+1)
i (τ) and λ̂

(n+1)
i , we can estimate Ft by OLS method:

F̂(n+1)
t =

(
Λ̂

(n+1)>
Λ̂

(n+1)
)−1

Λ̂
(n+1)>

R(n+1)
1,t

where R(n+1)
1,t =

(
y1t − x>1t β̂

(n+1)
1 (τt), . . . , yNt − x>Nt β̂

(n+1)
N (τt)

)>
.

(5) Repeat Steps 2-4 until convergence.
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Asymptotic Properties

Assumption 1

(i-v) Regularity assumptions on weak serial and cross-sectional dependence and

kernel estimation.

(vi) Let R(n)
F = F̂(n) − F0. For the initial estimator F̂(0), suppose that

T−1/2‖R(0)
F ‖ = OP (δF,0) and (Th)−1/2‖W(τ)>R(0)

F ‖ = OP (δF,0) ,

where δF,0 satisfies that NTh4δ2
F,0 → 0, δ2

F,0/h→ 0 and max{N, T}δ4
F,0/h→ 0, as

N, T → ∞.

Assumption 2

(i-iv) Regularity assumptions on positive definiteness of asymptotic covariance

matrices.

See Assumptions
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Asymptotic Properties

Theorem 2.1 (Consistency) Under Assumption 1, as N, T → ∞ simultaneously,

(1) N−1/2
∥∥∥Λ̂

(n) −Λ
∥∥∥ = Op (max {δF,0, δNT});

(2) T−1/2
∥∥∥F̂(n) − F

∥∥∥ = Op (max {δF,0, δNT}) ,

where δNT = min{
√

N,
√

T}−1.
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Asymptotic Properties

Assume that

xit = gi(τt) + vit. (14)

Notations:

Σv,i = E
[
vi1v>i1

]
, ΣF = E

[
F0

1F0>
1

]
, Σv,F,i = E

[
vitF0>

t

]
, Σv,λ,i = E

[
vitλ

0>
i

]
,

ΣX,i(τ) = gi(τ)g>i (τ) + Σv,i, ΩF,i = ΣF − Σ>v,F,i

∫ 1

0
Σ−1

X,i (τ)dτΣv,F,i,

σij,ts = E[εitεjs], zit = F0
t − Σ>v,F,iΣ

−1
X,i (τt)xit, Σλ = lim

N→∞
N−1

N

∑
i=1

λ0
i λ0>

i ,

∆F,i = Σv,F,iΩ
−1
F,i Σ>v,F,i, λ†

i (τ) = Σ−1
X,i (τ)

(
Σv,λ,i(τ) + gi(τ)λ

0>
i

)
,

Ω1(t, s) = N−1
N

∑
i=1

E
[
λ0

i λ0>
i x>it Σ−1

X,i (τt)xis

]
, Ω2(t, s) = N−1

N

∑
i=1

E
[
λ0

i λ0>
i z>it Ω−1

F,i zis

]
,

Ω3(t, s) = Σ−1
λ (h−1Ks,0(τt)Ω1(t, s) + Ω2(t, s)),
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Asymptotic Properties

Theorem 2.2 (CLT, n ≥ 2) Let Assumptions 1 and 2 hold. Then, as N, T → ∞

simultaneously,

(1) if N/T → c1 < ∞, for any given t, we have

√
N
(

F̂(n)
t − F0

t − b†(n)
F,t

)
D−−→ N (

√
c1dF,t, ΣF,t),

where ΣF,t = Σ−1
λ Σ0

F,tΣ
−1
λ ,

b†(n)
F,t = T−n

T

∑
s1 ,s2 ,...,sn=1

Ω3(t, s1)
n−1

∏
j=1

Ω3(sj, sj+1))R
(0)
F,sn

,

dF,t = lim
N,T→∞

1/(N
√

T)Σ−1
λ

N

∑
i=1

T

∑
s=1

Ω−1
F,i Σ>v,F,iΣ

−1
X,i (τs)gi(τs)σii,ts.

See Assumptions
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Asymptotic Properties

Theorem 2.2 (CLT, n ≥ 2) Let Assumptions 1 and 2 hold. Then, and as N, T → ∞

simultaneously,

(2) if T/N → c2 < ∞, for any given i, we have

√
T
(

λ̂
(n)
i − λ0

i − b†(n)
λ,i

)
D−−→ N (

√
c2dλ,i, Σλ,i),

where Σλ,i = Ω−1
F,i Σ0

λ,iΩ
−1
F,i ,

b†(n)
λ,i = T−1Ω−1

F,i Σ>v,F,i

T

∑
t=1

λ†
i (τt)b

†(n−1)
F,t ,

d∗λ,i = 1/
√

NΩ−1
F,i Σ−1

λ µλ

N

∑
j=1

σij,11.

See Assumptions
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Asymptotic Properties

Theorem 2.2 (CLT, n ≥ 2) Let Assumptions 1 and 2 hold. Then, as N, T → ∞

simultaneously,

(3) for any given (i, τ), we have

√
Th
(

β̂
(n)
i (τ)− βi(τ)− ai(τ)h2 − b†(n)

β,i (τ)

)
D−−→ N (0p, Σβ,i(τ)),

where ai(τ) =
µ2
2 β′′i (τ)(1 + o(1)), Σβ,i(τ) = Σ−1

X,i (τ)Σ
0
β,i(τ)Σ

−1
X,i (τ),

µ2 =
∫

u2K(u)du, and

b†(n)
β,i (τ) = −T−1Σ−1

X,i (τ)
T

∑
t=1

(
h−1Kt,0(τ)ΣX,i(τ) + ∆F,i

)
λ†

i (τt)b
†(n−1)
F,t .

See Assumptions
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Asymptotic Properties

Corollary 2.1 (CLT, n ≥ 2) Let Assumptions 1 and 2 hold. If εit is both serially and

cross-sectionally uncorrelated, as N, T → ∞ simultaneously,

(1)
√

N
(

F̂(n)
t − F0

t − b†(n)
F,t

)
D−−→ N (0r, ΣF,t);

(2)
√

T
(

λ̂
(n)
i − λ0

i − b†(n)
λ,i

)
D−−→ N (0r, Σ∗λ,i);

(3)
√

Th
(

β̂
(n)
i (τ)− βi(τ)− ai(τ)h2 − b†(n)

β,i (τ)

)
D−−→ N (0p, Σ∗β,i(τ));

where Σ∗λ,i = Ω−1
F,i σ2

ε and Σ∗β,i(τ) = v0Σ−1
X,i (τ)σ

2
ε .
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Asymptotic Properties

Define

κ = lim
N,T→∞

(NT)−1
T

∑
s=1

N

∑
i=1

g>i (τt)Σ
−1
X,i (τt)

(
Σv,F,iΩ

−1
F,i Σ−1

v,F,iΣ
−1
X,i (τs)gi(τs) + gi(τt)

)
∈ [0, 1).

Theorem 2.3 (CLT, n→ ∞) Let Assumptions 1-3 hold. Suppose

max
{√

N,
√

T
}

κn−2δF,0 → 0.

We have

(1) If, in addition, N/T → c1 < ∞,

√
N
(

F̂(n)
t − F0

t

)
D−−→ N (

√
c1dF,t, ΣF,t),

(2) If, in addition, T/N → c2 < ∞,

√
T
(

λ̂
(n)
i − λ0

i

)
D−−→ N (

√
c2dλ,i, Σλ,i),

(3) For any given τ ∈ (0, 1),
√

Th
(

β̂
(n)
i (τ)− βi(τ)− ai(τ)h2

)
D−−→ N (0p, Σβ,i(τ)).

See Assumptions
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Asymptotic Properties

Consider the following mean-group estimator (MGE)

β̂
(n)
w (τ) =

N

∑
i=1

wN,i β̂
(n)
i (τ),

where wN,i ≥ 0 and ∑N
i=1 wN,i = 1.

Theorem 2.4 (CLT, MGE) Let Assumptions 1-4 hold. Suppose√
γN,wTh κn−2δF,0 → 0.

We have √
γN,wTh

(
β̂
(n)
w (τ)− βw(τ)− aw(τ)h2

)
D−−→ N (0p, Σβ,w), (15)

where

I γN,w =
(

∑N
i=1 w2

N,i

)−1
,

I aw(τ) =
µ2
2 ∑N

i=1 wN,iβ
′′
i (τ)(1 + oP(1)), βw(τ) = ∑N

i=1 wN,iβi(τ).

See Assumptions
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Discussions on initial estimators
Exogenous factor models

Step 1. First, by the local linear method:

β̂
(0)
i (τ) =

[
Ip, 0p

] (
M>i (τ)W(τ)Mi(τ)

)−1
M>i (τ)W(τ)yi. (16)

Step 2. Second, by PCA:

1
NT

N

∑
i=1

R2,iR>2,iF̂
(0) = F̂(0)VNT,1, (17)

where R2,i = (Ri1(β̂
(0)
i (τ1)), · · · , RiT(β̂

(0)
i (τT)))

> with Rit(β) = yit − x>it β, and VNT,1 is

an r× r diagonal matrix with diagonal elements being the first r largest eigenvalues of

the matrix (NT)−1 ∑N
i=1 R2,iR>2,i.
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Discussions on initial estimators
Exogenous factor models

Corollary 3.1 (CLT, exogenous factor case) Let Assumptions 1.(i-v), 2-3, 5 hold.

Suppose

max

{√
N
Th

,

√
T
N

}
κn−2 → 0.

We have Theorem 2.3.(1-3) holds.
See Assumptions
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Discussions on initial estimators
Endogenous factor models

Assume that

xit = gi(τt) + vit, vit = γ0>
i F0

t + ηit. (18)

Step 1. First, by the local linear method:

ĝ(w)
i (τ) = [1, 0]

(
M>T (τ)W(τ)MT(τ)

)−1
M>T (τ)W(τ)x̃(w)

i (19)

where ĝ(w)
i (τ) is the w-th element of ĝi(τ), x̃(w)

i =
(

x(w)
i1 , · · · , x(w)

iT

)>
and x(w)

it is the

w-th element of xit, for w = 1, 2, . . . , p.

Step 2. Second, by PCA:(
1

NTp

p

∑
w=1

R̃(w)
g R̃(w)>

g

)
F̂(0) = F̂(0)VNT,2 (20)

where R̃(w)
g =

(
R̃(w)

g,1 , . . . , R̃(w)
g,N

)
, R̃(w)

g,i = (R(w)
g,i1 , . . . , R(w)

g,iT)
> with R(w)

g,it being the w-th

element of Rg,it = xit − ĝi(τt), and VNT,2 is an r× r diagonal matrix with diagonal

elements being the first r largest eigenvalues of the matrix (NTp)−1 ∑
p
w=1 R̃(w)

g R̃(w)>
g .
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Discussions on initial estimators
Endogenous factor models

Corollary 3.2 (CLT, endogenous factor case) Let Assumptions 1.(i-v), 2-3, 6 hold.

Suppose

max

{√
N
Th

,

√
T
N

}
κn−2 → 0.

We have Theorem 2.3.(1-3) holds.
See Assumptions
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Simulation studies
An example with exogenous factors

Example 1 Consider the following data generating process:

Yit = Xit,1β1i(τt) + Xit,2β2i(τt) + λi,1Ft,1 + λi,2Ft,2 + εit,

where

I (β1i(u), β2i(u)) = (sin(πu) + cos(0.25πi), cos(πu) + 0.5 sin(0.25πi));

I Xit,1 = gi1(τt) + γi1,1Gt,1 + γi2,1Gt,2 + ηit,1;

I Xit,2 = gi2(τt) + γi1,2Gt,1 + γi2,2Gt,2 + ηit,2;

I (gi1(u), gi2(u)) = (3 cos(π(u + 0.25i)), 5 sin(π(u + 0.25i));

I Ft,1 = ρF1 Ft−1,1 + vF1 ,t with ρF1 = 0.6;

I Ft,2 = ρF2 Ft−1,2 + vF2 ,t with ρF2 = 0.4;

I (Gt,1, Gt,2) ∼ i.i.d.N(0, 1); the loadings and error terms: σij,1 = 0.8|i−j|;
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Simulation studies
An example with exogenous factors

For β̂
(n)
w (τ)

I wi =
1
N , for i = 1, 2, . . . , N;

I hcv: leave-one-out cross-validation method;

I Epanechnikov kernel is adopted.

For F̂(n)
t and λ̂

(n)
i ,

I r = 2 as given.
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Simulation studies
An example with exogenous factors

I Replication times: R = 1000 times;

I For each replication,

MSE(β̂
(n)
l,w ) =

1
T

T

∑
t=1

(
β̂
(n)
l,w (τt)− βl,w (τt)

)2
,

for l = 1, 2, where βl,w (τt) = N−1 ∑N
i=1 βl,i (τt) are true values.

I The second canonical correlation coefficients between {λ̂(n)
i } and {λi}, {F̂

(n)
t }

and Ft are computed respectively for each replication.
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Simulation studies
An example with exogenous factors

Table 1: Means and SDs of the mean squared errors for Example 4.1

MSE β̂
(n)
w,1 β̂

(n)
w,2

N/T 10 20 40 80 10 20 40 80

10 0.1771 0.0845 0.0454 0.0219 0.0531 0.0185 0.0077 0.0046

(0.1755) (0.0343) (0.0203) (0.0119) (0.0775) (0.0135) (0.0034) (0.0023)

20 0.1232 0.0650 0.0172 0.0123 0.0329 0.0133 0.0041 0.0026

(0.0959) (0.0174) (0.0079) (0.0051) (0.0285) (0.0075) (0.0017) (0.0010)

40 0.0954 0.0533 0.0154 0.0070 0.0225 0.0102 0.0036 0.0018

(0.0209) (0.0123) (0.0053) (0.0027) (0.0147) (0.0038) (0.0009) (0.0005)

80 0.0898 0.0455 0.0167 0.0046 0.0200 0.0083 0.0037 0.0015

(0.0159) (0.0084) (0.0039) (0.0017) (0.0128) (0.0020) (0.0006) (0.0004)
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Simulation studies
An example with exogenous factors

Figure 1: The simulated confidence intervals (Example 4.1)
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Simulation studies
An example with exogenous factors

Table 2: Means and SDs of the second canonical coefficients for Example 4.1

SCC λ̂
(n)
i F̂(n)t

N/T 10 20 40 80 10 20 40 80

10 0.3619 0.4877 0.5527 0.6042 0.4330 0.6693 0.8130 0.8736

(0.2266) (0.2346) (0.2349) (0.2342) (0.2447) (0.2696) (0.2218) (0.1961)

20 0.4461 0.6297 0.7433 0.8059 0.4455 0.7320 0.8914 0.9432

(0.2570) (0.2388) (0.1931) (0.1521) (0.2470) (0.2337) (0.1687) (0.1260)

40 0.5667 0.8081 0.8985 0.9213 0.5041 0.8374 0.9579 0.9818

(0.2688) (0.1668) (0.0597) (0.0440) (0.2410) (0.1641) (0.0446) (0.0308)

80 0.6934 0.9178 0.9514 0.9638 0.5573 0.9035 0.9718 0.9890

(0.2491) (0.0565) (0.0213) (0.0125) (0.2315) (0.0612) (0.0152) (0.0058)
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Simulation studies
An example with endogenous factors

Example 2 Consider the following data generating process:

Xit,1 = gi,1(τt) + γi1,1Ft,1 + γi2,1Ft,2 + ηit,1

Xit,2 = gi,2(τt) + γi1,2Ft,1 + γi2,2Ft,2 + ηit,2 (21)

where (gi1(u), gi2(u)) = (3 cos(πu), 5u). (γi1,1, γi1,2), (Ft,1, Ft,2) and (ηit,1, ηit,2) are

following the same DGP in Example 1.
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Simulation studies
An example with endogenous factors

Table 3: Means and SDs of the mean squared errors for Example 4.2

MSE β̂
(n)
w,1 β̂

(n)
w,2

N/T 10 20 40 80 10 20 40 80

10 0.2790 0.0883 0.0511 0.0181 0.0922 0.0213 0.0093 0.0051

(0.5040) (0.0414) (0.0278) (0.0152) (0.1979) (0.0238) (0.0056) (0.0038)

20 0.1514 0.0607 0.0192 0.0087 0.0599 0.0126 0.0047 0.0024

(0.1648) (0.0257) (0.0103) (0.0060) (0.1353) (0.0067) (0.0021) (0.0014)

40 0.1119 0.0537 0.0160 0.0045 0.0369 0.0107 0.0038 0.0015

(0.0783) (0.0148) (0.0061) (0.0030) (0.1087) (0.0040) (0.0011) (0.0006)

80 0.0906 0.0437 0.0128 0.0035 0.0250 0.0087 0.0032 0.0012

(0.0304) (0.0100) (0.0038) (0.0016) (0.0135) (0.0023) (0.0007) (0.0004)
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Simulation studies
An example with endogenous factors

Figure 2: The simulated confidence intervals (Example 4.2)
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Simulation studies
An example with endogenous factors

Table 4: Means and SDs of the second canonical coefficients for Example 4.2

SCC λ̂
(n)
i F̂(n)t

N/T 10 20 40 80 10 20 40 80

10 0.4638 0.5178 0.5555 0.6054 0.3900 0.5814 0.7079 0.7652

(0.2444) (0.2326) (0.2291) (0.2335) (0.2511) (0.2673) (0.2442) (0.2446)

20 0.5328 0.6467 0.7218 0.7598 0.3888 0.6804 0.8091 0.8603

(0.2512) (0.2188) (0.1895) (0.1788) (0.2284) (0.2247) (0.2003) (0.1724)

40 0.6824 0.8007 0.8726 0.9032 0.4631 0.7906 0.9128 0.9510

(0.2029) (0.1391) (0.0804) (0.0658) (0.2217) (0.1357) (0.0716) (0.0527)

80 0.7202 0.8952 0.9426 0.9605 0.5079 0.8532 0.9475 0.9773

(0.2119) (0.0901) (0.0404) (0.0146) (0.1958) (0.0941) (0.0410) (0.0112)
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An empirical application in health economics
Data description

The economic relationship between health care expenditure and income is

reconsidered with the data set of OECD countries:

I The annual data is from 1971 to 2013 (T = 43) on 18 OECD countries (N = 18);

I Yit: per capita health care expenditure (in US dollars, HEit);

I Xit,1: per capita GDP (in US dollars, GDPit);

I Xit,2: the proportion of population above 15 years over all population (DRyoung
it );

I Xit,3: the proportion of population above 65 years over all population (DRold
it );

I Xit,4: the proportion of government funding invested on health care industry in

total health care expenditure (GHEit );

I all variables are expressed in natural logarithm.
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An empirical application in health economics

Consider the following model:

HEit = β1,itGDPit + β2,itDRyoung
it + β3,itDRold

it + β4,itGHEit +
r

∑
m=1

λmifmt + εit, (22)

where

I (β1,i(τ), β2,i(τ), β3,i(τ), β4,i(τ)): unknown deterministic functions;

I (f1t, . . . , frt): common factors; (λ1i, . . . , λri): loadings.
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An empirical application in health economics
The number of factors

The criterion proposed by Bai and Ng (2002):

IC(r) = log

(
1

NT

N

∑
i=1

T

∑
t=1

ε̂2
it

)
+ r

(
N + T

NT

)
log (min{N, T}) (23)

where ε̂it is the estimated residuals from model (22) with r factors.

Table 5: The values of IC(r) in the determination of factor number

r 1 2 3 4 5 6 7 8

IC(r) -6.6058 -6.5600 -6.5538 -6.4607 -6.4057 -6.3390 -6.2940 -6.2798
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An empirical application in health economics

Figure 3: The estimated elasticities and confidence intervals

See bootstrap
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An empirical application in health economics

Different groups:

I The European countries: Austria, Denmark, Finland, Germany, Iceland, Ireland,

Netherlands, Norway, Portugal, Spain, Sweden and the UK;

I Non-European countries: Australia, Canada, Japan, Korea, New Zealand and the

US.
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An empirical application in health economics

Figure 4: The estimated elasticities and confidence intervals (European OECD countries)

See bootstrap
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An empirical application in health economics

Figure 5: The estimated elasticities and confidence intervals (Non-European OECD countries)

See bootstrap
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An empirical application in health economics
Estimated loadings and factors

Figure 6: The estimated loadings and factors
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Conclusions

Our contributions can be summarized as follows:

I Model:

I Time-varying regression coefficients are introduced;

I Heterogeneity is allowed.

I Method:

I A recursive method is proposed to reduce the bias;

I It can be generally used when the factors are exogenous or endogenous.

I Asymptotic properties are established for the proposed estimators,

including the factors and loadings.

I Empirical results: evidence of time-variation and heterogeneity in income

elasticity of health care expenditure.
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Thank You
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Appendix
Notation

Define

I W(τ) = diag
(
K( 1−τT

Th ), . . . , K( T−τT
Th )

)
I

M(τ) =


x>1

1−τT
Th x>1

...
...

x>T
T−τT

Th x>T

 . (24)

I W̃(τ) = W(τ)⊗ IN ,

I y = (y>1 , · · · , y>T )>.

Return



Appendix
Notation

Define

yt = (y1t, y2t, . . . , yNt)
> , xt = (x1t, x2t, . . . , xNt)

V = (v1, v2, . . . , vN)
> , F̃t =

(
F̃1t, F̃jt, . . . , F̃rt

)>
,

F̃ =
(

F̃1, F̃2, . . . , F̃T

)>
, εt = (ε1t, ε2,t, . . . , εNt)

> .

Return



Appendix
Notation

Let W0(τ) = diag
(
K( 1−τT

Th ), . . . , K( T−τT
Th )

)
, W(τ) = W0(τ)⊗ IN , ỹt = MVyt,

x̃t = xtMV and

M(τ) =


x̃>1

1−τT
Th x̃>1

...
...

x̃>T
T−τT

Th x̃>T

 .

Return



Appendix
Notation

Define

yi = (yi1, · · · , yiT)
>, W(τ) =

(
K
(

1− τT
Th

)
, · · · , K

(
T− τT

Th

))

and

Mi =


x>i1

1−τT
Th x>i1

...

x>iT
T−τT

Th x>iT

 .

Return



Appendix
Notation

Notations:

I Ω3(t, s) = Σ−1
λ (h−1Ks,0(τt)Ω1(t, s) + Ω2(t, s)),

I λ†
i (τt) = Σ−1

X,i (τt)
(

ΣX,λ,i(τt) + E [xit] λ>i

)
,

I ∆F,i = Σv,FΩ−1
F,i Σ>v,F, ΣX,λ,i(τt) = E

[
xitλ

>
i

]
Return



Appendix
Assumptions

Assumption 1.

(i) α–mixing conditions on panel data are assumed as follows: {vt , εt , F0
t } are strictly stationary and α–mixing

across t; Let αij(|t− s|) represent the α-mixing coefficient between {εit} and {εjs}. Assume that

N
∑
i=1

N
∑
j=1

T
∑
t=1

(
αij(t)

)δ/(4+δ)
= O(N) and

N
∑
i=1

N
∑
j=1

(
αij(0)

)δ/(4+δ)
= O(N),

where δ > 0 is chosen such that E
[
‖ωit‖4+δ

]
< ∞ with ωit ∈ {λ0

i , F0
t , εit , vit}. Let α(|t− s|) represent the

α-mixing coefficient between {vit , F0
t } and {vis , F0

s }. Assume that

α(t) = O(t−θ ),

where θ > (4 + δ)/δ.

(ii) {εit} are identically distributed across i with zero mean and independent of {F0
s , λ0

j , vjs}, for any i, j, t, s.

(iii) The unknown deterministic functions {βi(τ)} have continuous derivatives of up to the second order on its

support τ ∈ [0, 1], and the functions {gi(τ)} are uniformly bounded: max1≤i≤N supτ∈[0,1] ||gi(τ)|| < ∞.

(iv) The kernel function K(·) is Lipschitz continuous with compact support on [−1, 1].

(v) As N, T → ∞, the bandwidth satisfies that h→ 0, max{N, T}h4 → 0 and min{N, T}h2 → ∞.

(vi) Let R(n)
F = F̂(n) − F0 . For the initial estimator F̂(0) , suppose that

T−1/2‖R(0)
F ‖ = OP

(
δF,0

)
and (Th)−1/2‖W(τ)>R(0)

F ‖ = OP
(
δF,0

)
,

where δF,0 satisfies that NTh4δ2
F,0 → 0, δ2

F,0/h→ 0 and max{N, T}δ4
F,0/h→ 0, as N, T → ∞.

Return



Appendix
Assumptions

Notation:

σ2
v,ε,i = σ2

ε Σv,i + 2
∞

∑
t=2

E [ε11ε1t ]E
[
vi1v>it

]
, σ2

ε,0 = σ2
ε + 2

∞

∑
t=2

E
[
ε11ε1,t

]
, σ2

ε = E
[
ε2

11

]
,

v0 =
∫

K(u)2du, Σ0
β,i(τ) = v0

(
σ2

v,ε,i + σ2
ε,0gi(τ)g

>
i (τ)

)
,

ξ1,it = λ0>
i F0

t , ξ2,it = vitλ0>
i , σ2

F,ε,0 = σ2
ε ΣF + 2

∞

∑
t=2

E [εi1εit ]E
[
F0

1F0>
t

]
,

Σ0
λ,i = σ2

F,ε,0 −
∫ 1

0
Σ>v,F,iΣ

−1
X,i (v)

(
σ2

v,ε,i + σ2
ε,0gi(v)g

>
i (v)

)
Σ−1

X,i (v)Σv,F,idv

Assumption 2.

(i) Assume the following moment conditions on {εit, ξ1,it, ξ2,it}:

N
∑
i=1

N
∑
j=1

T
∑

t1=1

T
∑

t2=1

T
∑

t3=1

T
∑

t4=1
|Cov(εit1

εit2
, εjt3

εjt4
)| ≤ CNT2

N
∑
i=1

N
∑
j=1

T
∑

t1=1

T
∑

t2=1

T
∑

t3=1

T
∑

t4=1
|Cov(ξ1,it1

ξ1,it2
, ξ1,jt3

ξ1,jt4
)| ≤ CNT2

N
∑
i=1

N
∑
j=1

T
∑

t1=1

T
∑

t2=1

T
∑

t3=1

T
∑

t4=1
‖Cov(ξ2,it1

ξ>2,it2
, ξ2,jt3

ξ>2,jt4
)‖ ≤ CNT2



Appendix
Assumptions

Assumption 2.

(ii) Assume that Σv,i , ΣF , Σ0
β,i(τ) and Σ0

λ,i are positive definite and σ2
ε is a positive scalar.

(iii) Suppose that
∥∥∥N−1 ∑N

i=1 λ0
i λ0>

i − Σλ

∥∥∥ = OP
(
N−1/2

)
and

N−1/2
N
∑
i=1

λ0
i εit

D−−→ N (0, Σ0
F,t),

for any fixed t, where both Σλ , Σ0
F,t are positive definite.

(iv) Let h satisfy lim supN,T→∞ NTh5 < ∞, NT−(4+δ∗ )/4 → 0, Nδ†
T−θ h−3−θ (log T)1+2θ → 0, for 0 < δ∗ < δ

and δ† = (6 + δ)/(4 + δ)− 2(1 + θ)/(2 + δ), where θ and δ are defined in Assumption 1.

Return



Appendix
Assumptions

Assumption 3.

Let E
[
λ0

i λ0>
i |vi1, . . . , viT , F0>

1 , . . . , F0>
T

]
= Σλ almost surely, where

Σλ = limN→∞ N−1 ∑N
i=1 λ0

i λ0>
i is positive definite.

Return



Appendix
Assumptions for the heterogeneous model

Assumption 4.

(i) Assume that E
[
vitλ

0>
i

]
= E

[
vitF0>

t
]
= 0p×r and E[λi] = 0r.

(ii) Define that

σ̃2
v,ε(i, j, τ) = Σ−1

X,i (τ)σ
2
v,ε(i, j)Σ−1

X,j (τ),

σ̃2
ε (i, j, τ) = σ2

ε (i, j)Σ−1
X,i (τ)gi(τ)g>j (τ)Σ

−1
X,j (τ),

Σβ,w(τ) = lim
N→∞

γN,wv0

N

∑
i=1

N

∑
j=1

wN,iwN,j

(
σ̃2

ε (i, j, τ) + σ̃2
v,ε(i, j, τ)

)
.

We assume ΩF,i and Σβ,w(τ) are positive-definite matrices, where ΩF,i is defined

in Theorem 1.

(iii) The bandwidth h satisfies that: limN→∞ γN,wh3 = 0.

Return



Appendix
Assumptions

Assumption 5.

(i) Assume the estimators F̂(0) and Λ̂
(0)

satisfy the following identification condition:

N−1Λ̂
(0)>

Λ̂
(0)

= diagnal and T−1F̂(0)>F̂(0) = Ir.

(ii) Assume the true values F0 and Λ0 satisfy the identification conditions in Assumption 5.1.

(iii) Suppose F0
t is conditionally uncorrelated with Λ0, v1, . . ., vT :

E
[
F0

t |Λ0, v1, . . . , vT
]
= 0r.

In addition, we assume
{

F0
t |Λ0, v1, . . . , vT

}
satisfies the α-mixing condition in Assumption 1.

(iv) Suppose the following moment conditions can hold:

T

∑
t1=1

T

∑
t2=1

T

∑
t3=1

T

∑
t4=1

∥∥∥E
[
F0

t1
F0>

t2
F0

t3
F0>

t4

]∥∥∥ ≤ CT2,

N

∑
i=1

N

∑
j=1

T

∑
t1=1

T

∑
t2=1

T

∑
t3 6=t1

T

∑
t4 6=t2

∣∣∣E [εit1 εjt2 εit3 εjt4

]∣∣∣ ≤ CNT2.

Return



Appendix
Assumptions

Assumption 6.

(i) Assume the estimators F̂(0) and γ̂
(0)
i satisfy the following identification condition:

N−1
N

∑
i=1

γ̂
(w,0)>
i γ̂

(w,0)
i = diagnal and T−1F̂(0)>F̂(0) = Ir,

for w = 1, 2, . . . , p, where γ̂
(w,0)
i is the w-th column of γ̂

(0)>
i .

(ii) Assume the true values F0 and λ0 satisfy the identification conditions in Assumption 5.1.

(iii) The unknown deterministic function gi(τ) has continuous derivatives of up to the second

order on its support τ ∈ [0, 1]. Assume that the loadings {γi} are deterministic and

uniformly bounded.

(iv) Suppose we have the following moment conditions:

T

∑
t1=1

T

∑
t2=1

T

∑
t3=1

T

∑
t4=1

∥∥∥E
[
F0

t1
F0>

t2
F0

t3
F0>

t4

]∥∥∥ ≤ CT2,

N

∑
i=1

N

∑
j=1

T

∑
t1=1

T

∑
t2=1

T

∑
t3 6=t1

T

∑
t4 6=t2

∥∥∥E
[
ηit1

η>jt2
ηit3

η>jt4

]∥∥∥ ≤ CNT2.

Return



Appendix
Estimated loadings and factors

Figure 7: The estimated loadings and factors



Appendix
Bootstrapping

The details for our bootstrapping method are as follows:

Step 1. Calculate the residuals {εit} for the estimation method discussed in Section 2.

Step 2. Resample the residuals and obtain {ε∗it}, where ε∗it = εk and k is randomly

selected from {1, . . . , T}. Then the bootstrapping sample {Y∗it} can be generated

with {ε∗it}.

Step 3. The bootstrapping estimator β
∗
t can be obtained using the data set {Y∗it}.

Step 4. Repeat Steps 2 and 3 1000 times to obtain the 90% confidence intervals.

Return to simulations Return to empirical



Appendix
Discussions on initial estimator: exogenous factors

PCA method to find F̂(0):

(1) First, ignore the common factor part and estimate βit using local linear method:

β̂
(0)
i (τ) =

[
Ip, 0p

] (
M>i (τ)W(τ)Mi(τ)

)−1
M>i (τ)W(τ)yi,

for i = 1, . . . , N.

(2) Then estimate F using the PCA method as follows:

1
NT

N

∑
i=1

R3,iR>3,iF̂
(0) = F̂(0)VNT,F, (25)

where R3,i =

(
Ri1(β̂

(0)
1 (τ1)), . . . , RiT(β̂

(0)
i (τT))

)>
and Rit(β) = yit − x>it β(τt).



Appendix
Discussions on initial estimator: exogenous factors

Corollary 3.2 Under some regularity conditions and F̂(0) satisfies (25),

1√
T

∥∥∥F̂(0) − FH1

∥∥∥ = Op

(
max{(Th)−1/2, N−1/2, h2}

)
, (26)

where H1 = (NT)−1 ∑N
i=1 λiλ

>
i F>F̂(0)V−1

NT,1.
See Assumptions



Appendix
Discussions on initial estimator: endogenous factors

Consider the following model:

yit = x>it βit + λ>i Ft + εit

xit = gi(τt) + γ>i Ft + ηit

PCA method to estimate F̂(0),

(1) We first estimate the gi(τ) using local linear method:

ĝ(w)
i (τ) = [1, 0]

(
M>T (τ)W(τ)MT(τ)

)−1
M>T (τ)W(τ)x̃(w)

i (27)

where ĝ(w)
i (τ) is the w-th element of ĝi(τ), x̃(w)

i =
(

x(w)
i1 , · · · , x(w)

iT

)>
and x(w)

it is

the w-th element of xit.

(2) Then Ft can be estimated by the PCA method:(
1

NTp

p

∑
w=1

R̃(w)
g R̃(w)>

g

)
F̂(0) = F̂(0)VNT,g (28)

where R̃(w)
g =

(
R̃(w)

g,1 , . . . , R̃(w)
g,N

)
, R̃(w)

g,i = (R(w)
g,i1 , . . . , R(w)

g,iT)
> and R(w)

g,it is the w-th

element of Rg,it = xit − ĝi(τt).



Appendix
Discussions on initial estimator: endogenous factors

Corollary 3.3 Under some regularity conditions and F̂(0) satisfies (28),

1√
T

∥∥∥F̂(0) − FH1

∥∥∥ = Op

(
max{(Th)−1/2, N−1/2, h2}

)
, (29)

where H2 = 1
NTp ∑

p
w=1 ∑N

i=1 γ
(w)
i γ

(w)>
i F>F̂(0)V−1

NT,2.
See Assumptions Return to Estimation
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