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o Motivation

© Random matrix understanding of large dimensional classification
@ Kernel methods for large dimensional data
@ Properly scaled inner-product kernels

© From theory to practice in large dimensional machine learning
@ From toy to more realistic learning schemes
@ From toy to more realistic data models
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The pitfalls of large dimensional statistics: sample covariances in the large n, p regime

> For x; ~ N (0, C), estimate population covariance C from n data samples X = [x1,...,X,] € RP*".

» Maximum likelihood sample covariance matrix:

" 1
Yxix = XXT € RV

C= ;
i=1

3\’—‘

of rank at most n: optimal for 1 >> p (or, for p “small”).

> When n ~ p, conventional wisdom breaks down: for C = I, withn < p, Chas > p — n zero eigenvalues.

IC—C|l 20, n,p— oo

= eigenvalue mismatch and not consistent!
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When is one under the random matrix regime? Almost always!
I, as n,p — co with p/n — ¢ € (0, 00): the Marcenko—Pastur law

What about n = 100p? For C
(x—a)t(b—x)tdx

—1\+
)7To(x) + 27ex

uldx)y=01-c
wherea = (1 —/c)%, b= (1++/c)?and (x)* = max(x,0).
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Figure: Eigenvalue distribution of C versus Maréenko-Pastur law, p = 500, n = 50 000
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> eigenvalues span on [(1 — /c)?, (1 + /)?].
» forn = 100p,ona range of :I:2f £0.2 around population eigenvalue 1.
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Random matrix for large dimensional machine learning

Take-away message:

» Counterintuitive phenomena in the large 1, p regime

» RMT as a tool to assess, understand and improve large dimensional machine learning

Challenges:
> entry-wise nonlinearity: kernel function in kernel methods, activation function in neural networks

> (convex or non-convex) optimization-based methods with implicit solution

> more realistic data modeling
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“Curse of dimensionality”: loss of relevance of Euclidean distance

» Binary Gaussian mixture classification:
C1: N(py,Cq) versus Cp: N(py, C)

» Neyman-Pearson test: classification possible only when

Iy =2l > 0(1), €1 —Coll 2 O(p~""?), | te(C = )| = O(vp), [IC1—Callf > O(1).

> In this non-trivial setting, for x; € C; and x; € Cp,

1
max {foi— ]'Hz—T}&O
1<i#j<n | P

as n,p — oo, regardless of the classes C;, Cp!

» direct consequence to large dimensional (distance-based) kernel matrices!
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Reminder on kernel spectral clustering

Two-step classification of n data points based on similarity kernel K € R"*", e.g., K;; = exp (f 217: l[xi — x; H2> :
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Reminder on kernel spectral clustering
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EM or K-means clustering.
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Kernel matrices of small and large dimensional Gaussian data

Kjj = exp (— % Ix; — Xj ||2) and the second top eigenvectors v, for small and large dimensional Gaussian data.

(a) p =5,n =500 (b) p = 250,n = 500
p P
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Kernel matrices of small and large dimensional real-world data

(a) MNIST

>0

f
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(b) Fashion-MNIST
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A random matrix viewpoint of large kernel matrices

Asymptotic behavior of K [Couillet and Benaych-Georges'16]
For non-trivial classification of K-class Gaussian mixture N (p,, Ca), a € {1,...,K}, Ky = f(|[x; — sz /p) with
f three-times differentiable around 7, we have, as n,p — oo with p/n — ¢ € (0, )

_ . 1
IK-K| 230, K~f(1)1,1) + N+ EJAJT + %

with] = [j1,...,jk] € R"*K j, = [0,1,,0]7 (class-info vector!), N random noise and A function of
) ) ) o

> f(1),f'(r) and f"(7)

> statistical information |[u, — p, ||, tr(C, — C;) and ||C; — Cp||3, fora, b € {1,...,K}

» our low-dimensional machine learning intuitions collapse
> “curse of dimensionality” = Taylor expansion and local linearization of f

» RMT provides a fully accessible spiked-model description of nonlinear K
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Intuition: from small to large dimensional kernels

Accumulated effect of small but structural “hidden” statistical information.

> entry-wise: for K;; = exp <*217‘|xi - x]-||2> withx; = (=1)"p +z;, x; = (—1)lu+z, z;,z; ~ N(0,1p)

.~ _ 1 T, 1 2/ _1\a+b
Kj = exp(=1) (14 2z ) & (1) s
—— | ——
O(p=172) O™
1 yl12 < 1,75
so that J{|p[|* < 5z;' z;
> spectrum-wise: H%ZTZH = 0(1) and ||yH2H%]]T|| = 0(1) as well!

» we understand how kernel spectral clustering works for large dimensional data!
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Experiments on real-world data: MNIST

S04/

I Eigenvalues of K

Top eigenvectors of K

B Eigenvalues of K - == - Top eigenvectors of K
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(a) Eigenvalues of K versus K (b) Isolated eigenvectors of K and K
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Experiments on real-world data: Fashion-MNIST
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How to better exploit the nonlinear f?

Due to “curse of dimensionality”, %Hxi - ]-||2 —T.

> Taylor-expand K;; = f(||x; — xjHZ/p) around f (1)
»> K depends only on local behavior of smooth f

> use a single point of nonlinear f

To exploit global information of f = properly scaled kernel

£ (vo (Gix-x12=7)) or [T/ vp)

> x;rx]-/\/ﬁ — N(0,1), use whole domain of f
»> however, no “concentration” = CLT expansion with orthogonal polynomials

Key object

K = {8 f (I x;/ /D) / P} iz

Question: How f impacts the performance of kernel spectral clustering?
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Orthogonal polynomials and inner-product kernels

VPKii = f(x[x;//p): since xTx;/\/p — N(0,1), essentially evaluate f(N'(0,1)).
Orthogonal polynomial decomposition

Any f € L?(p,r) admits formal expansion (with Hermite polynomial)

f<x>~lialpz<x>, J PLPL RN @) = 0y a1 = [ PR pnc(e)
=0

withag = Egpr0,1)f(¢) = 0, and generalized moments | a; = E[¢f(Z)], V2a; = E[E%f(x)],v = E[f*(x)] |

Asymptotic behavior of inner-product K [Liao and Couillet'19]
Under non-trivial classification condition and C, = I, + E,, for f € Lz(y W), n,p — oo withp/n — ¢ € (0,00)

_ _ 1
K - K| 2% 0, K:N+?]A]T+*

with J class-info vectors, N random noise and A function of f and statistical information

A = a1 {llm, = myl1*}op=1 + 22 8(t1(Ca = Cp), Ca = CylIf) g1

v
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Consequences

A = a1 (I, — myl*Yapmy + 22 8(t(Ca = Cp), [1Ca = Cyl| g

_ _ 1
IK-K| 220, K~ ;]A]T+N+*,

> JAJT of low rank, limiting spectrum measure jg same as iy,
g sp M 14

characterized by unique m(z) € C* [Cheng and Signer’13] _
1 a’m(z) | v-—af B A0 prcfrom ()]
_ — 1 . e
mz) * ¢+ aym(z) c M) @ Lo a1 (fyp -1 = 1)
; - - ST |
with a; = E[Ef(2)], 21 = E[22f(x)] and v = E[f2(x)]. j S
> uk: “mix” of Marc¢enko-Pastur law pp and semicircle law pgc y \
|- 1 |
1 l,
pk = a1 (ppp e — 1) X \ (v— ﬂ%)cflﬂsc ! TN
1 : PR N
! Bl [T
with Kjj = f(x]x;//P)/ /P and f(x) = a1x + | /v — aif (x) -5 0 5 10
» (a1,v) determines “noisy” bulk; (a1, a;) informative spike.
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Practical consequences

_ . as. -1
K~ K[ =0, Ko ;JAJT +N+x | A=ar {lu, — gy + 02 8(tr(Ca— C), [ Ca — Cyl[E)zp1

(N

| |

0 5 10 0 5 10

(a) Eigenvalues of N (b) Eigenvalues of K (c) Top eigenvectors of N (top) and K (bottom)

»> K depend on f only via (aq,ay,v):
(a1,a,) impacts info and (a7, v) impacts noise

» minimize v for larger eigengap and better performance!

Misclassification rate

P Vin = a2 + a2, quadratic f is optimal among L2
1Ta,9 p gL (UN

v
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Practical consequences

A=a-{|lp, — mlP ey + 02 g(tr(Ca — Cy), ICa — Cpl|E) 551

_ _ 1
IK-K| 230, K~ ;]A]T+N+*,

» 4, control info in means and 4, info in covariances = tuning a; /a, with data!

T T T

T T
== MNIST data

= Epileptic EEG data _|

2
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Table: Empirical estimation of differences in means and
covariances of MNIST and EEG data

|l =il 1€ - &
MNIST 464.17 166.35
EEG 2.41 14.90

"http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html.
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Conclusion and limitations

Conclusion on large dimensional kernel methods:

> “curse of dimensionality” = K;; = f(|[x; — /~H2 /p) depends on f in a local manner

» proof based on Taylor expansion, holds only for smooth
> no interpretation for key parameters f(7),f'(1),f" (7)
» close match between theory and real-world data experiments

> exploit global information with properly scaled kernel K;; = f (x;.rx]- /PP

> proof based on orthogonal polynomials, holds for any f € L* ()
» better interpretation for key parameters (a1, a5, v)
» only tunning a; /4, in real-world data experiments

> allow for “plug-and-play” analyses of most kernel-based methods: e.g., kernel ridge regression, support
vector machines, graph-based semi-supervised methods, as well as random neural networks etc.

Limitations:

? optimization-based problems with implicit solution

? limited to Gaussian data

Z. Liao, R. Couillet (CentraleSupélec, U-GA) RMT for ML Dec 12, 2019, Shanghai 25/35



Large dimensional optimization-based learning problems

Empirical risk minimization: for {(x;,y;)}? ;, x; € R?, y; € {—1, +1}, find classifier § € R? that minimizes

=

1 A
oY (BT + 5 812

Il
-

1

for some nonnegative (possibly non-smooth) convex loss ¢ and regularization A > 0.

> logistic regression: £(t) = In(1 +e™¥)
> least squares: /(t) = (t —1)?
> boosting algorithm: £(t) = e~*

> SVM: £(t) = max(1 —¢,0)

0—1loss
> existence: for different ¢ and x, when such B exists? (function of A, lim p/n)
> optimality: how to choose loss function ¢ with respect to distribution of x;?

> difficulty: no closed-form solution: depend on all {(x;, y;) }!_; in a more involved manner.
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Some related works on optimization-based learning problems

~ 1 & A A L1 &
B=argmin L Y 0(y8Tx) + 21BI2 or B=argmin Y £(y; - BTx) + AR(B)
BER? i—1 gerr i35

Different approaches:

> approximate message passing and state-evolution analysis [Donoho and Montanari’16]
> convex Gaussian min-max theorem [Taheri, Pedarsani and Thrampoulidis'19]

» double “leave-one-out” approach [El Karoui et al.”13]: not suitable for data with pattern!

Intuition of improved “leave-one-out” approach [Mai and Liao"19]: single “leave-one-out” + RMT

> binary classification of x; ~ N (£p, C)
> denote B_; = argming g, %Z]-#i Z(yjﬁij) + %HlBHz B_; independent of (x;,y;) and B_, ~ B
> but Btixiy,- #* BTx,-yi = characterize (B — B_,)Txiy;: e.g, (B—B_,)Txiy; = kasn,p — oo

> since B;rixl-y,- — N (m,0?) by CLT = form a system of (fixed-point) equations for (11,02, )

» understand limiting performance for any three-times differentiable and convex ¢(-), as a function of p/n,
and data statistics (¢, C)
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Some simulations

Setting: binary classification x; ~ N'(+p, C) with y; = £1, logistic regression £(t) = In(1 +e~!) known to be
the maximum likelihood solution, with optimal Bayes solution (i.e., “true” parameter vector) 8, = 2C~!z.

I - 02 ™ x T T T T =
EE Empirical distribution of B_;x;y; 100X %00 3000 ——
X
| === Theory: N'(m, %) o e een 2005 X oo X%
0.1 #—W
0
0 N
—0.1 |-
0.2 |
-5 0 5 10 20 30 40 50 60

Remarks:

> can we get B, in the large 1, p limit? Not true even in expectation! B ~ =!8, 4 Gaussian noise
» maximum likelihood not optimal in high dimension: least-squares £(t) = (t — 1)? always better!
Limitations:
v optimization-based problems with implicit solution: yes if convex!
? limited to Gaussian data
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From theory to practice: concentrated random vectors

RMT often assumes x are affine maps Az + b of z € R” with i.i.d. entries.

Concentrated random vectors [Ledoux’05]

For Lipschitz function f : R” — R, there exists deterministic m; € R

2 ([f(x) — mg| > e) < e 8, for some strictly increasing function g.

Asymptotic behavior of K for concentrated data [Seddik, Tamaazousti, Couillet'19]

For non-trivial classification of K-class (universal) concentrated random mixture of mean p, and covariance
Coae{l,... . K} Ky =f(llx — ]»||2 /p) with f three-times differentiable around T,

_ _ 1
IK-K| 230, K=~f(1)1,1} + N+ EJA]T + *

with J class-info vectors, N random noise and A function of f(7),f'(7),f” (7) and statistical information.

=Theory remains valid for concentrated vectors and almost real images!
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From concentrated random vectors to GANs

Generator

. Generated Discriminator
examples

) o

N (0, IP . l. Concen- \

. vectors! Real?
Fake?

Real /

examples

.\r.

v

Figure: [llustration of a generative adversarial network (GAN).

. ? L—A
o N J

Figure: Images samples generated by BigGAN [Brock et al.”18].
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Some clues . ..and much more can be done!

RMT as a tool to analyze, understand and improve
large dimensional machine learning methods.

> powerful and flexible tool to assess matrix-based machine learning systems;
> study (convex) optimization-based learning methods, e.g., logistic regression;
» understand impact of optimization methods, the dynamics of gradient descent;

> non-convex problems (e.g., deep neural nets) are more difficult, but accessible in some cases, e.g., low
rank matrix recovery, phase retrieval, etc;

> more to be done: transfer learning, generative models, graph-based methods, robust statistics, etc.
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Thank you!

Thank you!

More info: https://romaincouillet.hebfree.org and https://zhenyu-liao.github.io!
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