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Linear regression model

Consider the multi-response linear regression model:

y
1×p

= x
1×k
· Θ
k×p

+ e
1×p
·Σ1/2

p×p
(1)

Aim: find the TRUE model if it exits.
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Overview of classical model selection criteria

From the point of view of statistical performance of a method, and
intended context of its use, there are only two distinct classes of methods:
labeled efficient and consistent.

Generally there are two main approaches:

(I) Optimization of some selection criteria;

(1) Criteria based on some form of mean squared error (e.g., Mallows’s Cp,
Mallows 1973) or mean squared prediction error (e.g., PRESS, Allen
1970);

(2) Criteria that are estimates of Kullback-Leibler (K-L) information or
distance (e.g., AIC, AICc, and QAICc );

(3) Criteria that are consistent estimators of the “true model” (e.g., BIC).

(II) Tests of hypotheses.
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Notation

Observations: Y : n× p and Xω = (x1, . . . ,xk) : n× k.

Notations: ω = {1, . . . , k}, j∗ ∈ ω, j ∈ ω, kj = the cardinality of j.

Full model ω: Y = Xω ·Θω + E ·Σ1/2.

True model j∗: Y = Xj∗ ·Θj∗ + E ·Σ1/2.

Candidate model j: Y = Xj ·Θj + E ·Σ1/2.

Θj = (θji, j ∈ j, i = 1, . . . , p)

Xj = (xj , j ∈ j)

Pj = Xj(X
′
jXj)

−1X′j

Σ̂j = n−1Y′(In −Pj)Y
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Classical selection criteria

Akaike’s information criterion (AIC, Akaike (1973,1974)):

AICj = n log |Σ̂j|+ 2kjp and ĵA = arg minAICj

Key: Kullback-Leibler information/distance

Kullback-Leibler Information

Kullback-Leibler information between density functions f and g is defined
for continuous functions

I(f, g) =

∫
f(x) log

(f(x)

g(x)

)
dx.

The notation I(f, g) denotes the “information lost when g is used to
approximate f .” As a heuristic interpretation, I(f, g) is the distance from
g to f .
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Classical selection criteria

Bayesian information criterion (BIC, Schwarz (1978), Akaike (1977,
1978)) :

BICj = n log |Σ̂j|+ log(n)kjp and ĵB = arg minBICj

Key: Consistence

Consistence

As n→∞, under some conditions, ĵB → j∗ almost surely.
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Classical selection criteria

Mallows’s Cp (Cp, Mallows (1973)):

Cpj = (n− k)tr(Σ̂−1ω Σ̂j) + 2pkj and ĵC = arg minCpj

Key: Mean squared error

Remark 1

Atilgan (1996) provides a relationship between AIC and Mallows’s Cp,
shows that under some conditions AIC selection behaves like minimum
mean squared error selection, and notes that AIC and Cp are somewhat
equivalent criteria.
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Low-dimensional

Assume k and p are fixed (Fujikoshi, 1985; Fujikoshi and Veitch, 1979).

If j is an over-specified model, i.e., j∗ ⊂ j,

P(AICj −AICj∗ < 0) ∼ P(χ2
kj−kj∗ > 2(kj − kj∗)) > 0

P(BICj −BICj∗ < 0) ∼ P(χ2
kj−kj∗ > log(n)(kj − kj∗))→ 0

P(Cpj − Cpj∗ < 0) ∼ P(χ2
kj−kj∗ > 2(kj − kj∗)) > 0

If j is an under-specified model, i.e., j∗ 6⊂ j,

AICj −AICj∗ =O(n)→ +∞
BICj −BICj∗ =O(n)→ +∞

Cpj − Cpj∗ =O(n)→ +∞
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Large-dimension and small-model

Assume j∗ ∈ ω is the true model, k is fixed and p/n→ c ∈ (0, 1).

Theorem 4.1 in (Fujikoshi et al., 2014)

If c ∈ (0, ca ≈ 0.797) where log(1− ca) + 2ca = 0 and for any j∗ 6⊂ j with
kj − kj∗ ≤ 0,

lim log(|I + Φj|) > (kj∗ − kj)[2c+ log(1− c)]

where Φj = 1
nΣ−

1
2 Θ′j∗X

′
j∗

(Pω −Pj)Xj∗Θj∗Σ
− 1

2 . Then,

lim
p/n→c

P(̂jA = j∗) = 1.

Otherwise,
lim
p/n→c

P(̂jA = j∗) 6= 1.

What about BIC?
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Large-dimension and small-model

Assume j∗ ∈ ω is the true model, k is fixed and p/n→ c ∈ (0, 1).

Theorem 4.1 in (Fujikoshi et al., 2014)

If c ∈ (0, 1/2) and for any j∗ 6⊂ j with kj − kj∗ ≤ 0,

tr(Φj) > (kj∗ − kj)c(1− 2c)

where Φj = 1
nΣ−

1
2 Θ′j∗X

′
j∗

(Pω −Pj)Xj∗Θj∗Σ
− 1

2 . Then,

lim
p/n→c

P(̂jC = j∗) = 1.

Otherwise,
lim
p/n→c

P(̂jC = j∗) 6= 1.
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Assumptions and notations

A1: The true model j∗ is a subset of set ω and k∗ := kj∗ is fixed.

A2: E = {eij} are i.i.d. with zero means, unit variances and
:::::
finite

::::::
fourth

::::::::
moments.

A3: X′X is (non-random) positive definite uniformly.

A4: As {k, p, n} → ∞, p/n→ c ∈ (0, 1), k/n→ α ∈ [0, 1− c).

A5: ‖Φ‖ := ‖ 1nΣ−
1
2 Θ′j∗X

′
j∗

Xj∗Θj∗Σ
− 1

2 ‖ is bounded uniformly.

A5’: As {k, p, n} → ∞,

‖Φj‖ := ‖ 1nΣ−
1
2 Θ′j∗X

′
j∗

(Pω −Pj)Xj∗Θj∗Σ
− 1

2 ‖ → ∞.
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Assumptions and notations

Define two bivariate functions

φ(α, c) = 2cα+ log

(
(1− c)1−c(1− α)1−α

(1− c− α)1−c−α

)
ψ(α, c) =

c(α− 1)

1− α− c
+ 2c.

For under-specified model j with kj∩jc∗ = m ≥ 0 and kj∩j∗ = s > 0, we
denote

τnj := (1− αm)s−p|(1− αm)Ip + Φj| → τj ≤ ∞
κnj := tr(Φj)→ κj ≤ ∞.
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Strong consistency of AIC, BIC and Cp

Theorem 1 (Bai, Fujikoshi and H. (2019))

Suppose (A1)-(A5) hold.

φ(α, c) > 0⇔ AIC is almost surely not over-specified;

If φ(α, c) > 0, for any under-specified candidate model j with
log(τj) > (s−m)(log(1− c) + 2c)⇔ AIC is almost surely not
under-specified;

Theorem 2 (Bai, Fujikoshi and H. (2019))

Suppose (A1)-(A5) hold, BIC is almost surely under-specified;
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Strong consistency of AIC, BIC and Cp

Theorem 3 (Bai, Fujikoshi and H. (2019))

Suppose (A1)-(A5) hold.

ψ(α, c) > 0⇔ Cp is almost surely not over-specified;

If ψ(α, c) > 0, for any under-specified model j, satisfying
κj > (s−m)ψ(α, c)(1− α− c)/(1− α)⇔ Cp is almost surely not
under-specified;

Jiang Hu (NENU) AIC, BIC, Cp and KOO Methods December, 2019 18 / 38



Figure: 3D plots for φ(α, c) > 0 and ψ(α, c) > 0.
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Strong consistency of AIC, BIC and Cp

Theorem 4 (Bai, Fujikoshi and H. (2019))

Suppose (A1)-(A4) and (A5’) hold.

φ(α, c) > 0⇔ AIC is almost surely not over-specified;

AIC is almost surely not under-specified;

Theorem 5 (Bai, Fujikoshi and H. (2019))

Suppose (A1)-(A4) and (A5’) hold.

For any under-specified model j,

limn,p

(
log(τnj)− c(s−m) log(n)

)
> (s−m) log(1− c)⇔ BIC is

almost surely not under-specified;

BIC is almost surely not over-specified;
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Strong consistency of AIC, BIC and Cp

Theorem 6 (Bai, Fujikoshi and H. (2019))

Suppose (A1)-(A4) and (A5’) hold.

ψ(α, c) > 0⇔ Cp is almost surely not over-specified;

Cp is almost surely not under-specified;

Remark 2

Under the condition φ(α, c) > 0, if the BIC is strongly consistent, then the
AIC is strongly consistent but not vice versa.
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KOO methods based on the AIC, BIC, and Cp

Knock-one-out (KOO) methods, which is introduced by Nishii et al.
(1988), is to avoid the well known computational problem of AIC, BIC and
Cp. Denote

Ãj :=
1

n
(AICω\j −AICω) = log |Σ̂ω\j | − log |Σ̂ω| − 2p/n,

B̃j :=
1

n
(BICω\j −BICω) = log |Σ̂ω\j | − log |Σ̂ω| − log(n)p/n,

C̃j :=
1

n
(Cpω\j − Cpω) = (1− k/n)trΣ̂−1ω Σ̂ω\j − (n− k + 2)p/n.

Choose the model:

j̃A = {j ∈ ω|Ãj > 0}, j̃B = {j ∈ ω|B̃j > 0}
j̃C = {j ∈ ω|C̃j > 0}.

Jiang Hu (NENU) AIC, BIC, Cp and KOO Methods December, 2019 22 / 38



KOO methods based on the AIC, BIC, and Cp

Note that for testing
θj = 0 v.s. θj 6= 0

(1) the −2 log likelihood ratio statistic under normality can be expressed as

n
{

log(|Σ̂ω|)− log(|Σ̂ω/j |)
}

;

(2) the Lawley-Hotelling trace statistic under normality can be expressed as

(n− k)tr(Σ̂−1ω Σ̂ω\j).

(3) Ãj (B̃j , C̃j) is regarded as a measure that expresses the degree of
contribution of xj based on Aj (Bj , Cp). As such, the KOO methods may
also be referred to as test-based methods.
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KOO methods based on the AIC, BIC, and Cp

Theorem 7 (Bai, Fujikoshi and H. (2019))

Suppose (A1)-(A5) hold.

log( 1−α
1−α−c) < 2c⇔ j̃A is almost surely not over-specified.

If log( 1−α
1−α−c) < 2c, for any j ∈ j∗, log(τω\j) > log(1−α− c) + 2c⇔

j̃A is almost surely not under-specified;

Theorem 8 (Bai, Fujikoshi and H. (2019))

Suppose (A1)-(A5) hold, j̃B is almost surely under-specified.

Theorem 9 (Bai, Fujikoshi and H. (2019))

Suppose (A1)-(A5) hold.

(1− α) < 2(1− α− c)⇔ j̃C is almost surely not over-specified.

If (1− α) < 2(1− α− c), for any j ∈ j∗, κω\j >
c(1−α−2c)

1−α ⇔ j̃C is
almost surely not under-specified;
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KOO methods based on the AIC, BIC, and Cp

Theorem 10 (Bai, Fujikoshi and H. (2019))

Suppose (A1)-(A4) and (A5’) hold. log( 1−α
1−α−c) < 2c⇔ j̃A is almost

surely consistent.

Theorem 11 (Bai, Fujikoshi and H. (2019))

Suppose (A1)-(A4) and (A5’) hold.

For any j ∈ j∗, [log(τω\j)− log(n)c] > log(1−α− c),⇔ j̃B is almost
surely not under-specified;

j̃B is almost surely not over-specified.

Theorem 12 (Bai, Fujikoshi and H. (2019))

Suppose (A1)-(A4) and (A5’) hold. (1− α) < 2(1− α− c)⇔ j̃C is
almost surely consistent.
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General KOO methods
Recall the KOO AIC: log(|Σ̂ω\j |)− log(|Σ̂ω|)− 2p/n(> 0);

Figure: We chose a Gaussian sample with p = 750, n = 1500, k = 450 and
k∗ = 5. Hence, c = 0.4 and α = 0.3. The histogram represents the distributions
of the k values of log(|Σ̂ω\j |)− log(|Σ̂ω|)− 2p/n. M1 = log( 1−α

1−α−c )− 2c and
Z1 = 0.
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General KOO methods

Denoting

Ăj := log(|Σ̂ω\j |)− log(|Σ̂ω|) and C̆j := tr(Σ̂ω\jΣ̂
−1
ω ),

and a fixed value ϑ ∈ (0,minj∈j∗{κω\j}), choose the model

j̆A = {j ∈ ω|Ăj > log(
1− α+ ϑ

1− α− c
)}, j̆C = {j ∈ ω|C̆j >

ϑ+ c

1− α− c
+ p}.

Then, we have the following theorem.

Theorem 13

Suppose that assumptions (A1) through (A4) hold and that for any
j ∈ j∗, κω\j > 0. Then, for any fixed value ϑ ∈ (0,minj∈j∗{κω\j}),

lim
n,p→∞

j̆A
a.s.→ j∗ and lim

n,p→∞
j̆C

a.s.→ j∗.
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General KOO methods

Remark 3

The condition in this theorem is much weaker than that in the AIC,
BIC, and Cp and in the KOO methods based on the AIC, BIC, and Cp.

Although κω\j is not estimable for j ∈ j∗, since the general KOO
methods are essentially used to detect the univariate outliers, there
are many well-developed methods, such as the standard deviation
(SD) method, Z-score method, Tukey’s method, and median absolute
deviation method, that can be used to determine the value of ϑ for
applications.
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Proof strategy

(1) Sylvester’s determinant theorem:

|nΣ̂j| =|Y′Qj−1Y −Y′a1a
′
1Y|

=|nΣ̂j−1 |(1− a′1Y(Y′Qj−1Y)−1Y′a1).

e.g. Ăj := log(|Σ̂ω\j |)− log(|Σ̂ω|) and C̆j := tr(Σ̂ω\jΣ̂
−1
ω )

(2) Stieltjes transform:

~n(z) := n−1a′tY(n−1Y′Qj−tY − zI)−1Y′at : C+ 7−→ C+.

(3) Vitali’s convergence theorem: For any fixed z ∈ C+, ~n(z)
a.s.→ ~(z)

and then let z ↓ 0 + 0i.
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Simulation

Setting I: Fix k∗ = 5, p/n = {0.2, 0.4, 0.6} and k/n = {0.1, 0.2} with
several different values of n. Set X = (xij)n×k, Θj∗ =

√
n15θ∗ and

Θ = (Θj∗ ,0), where {xij} are i.i.d. generated from the continuous
uniform distributions U(1, 5), 15 is a five-dimensional vector of ones
and θ∗ = ((−0.5)0, . . . , (−0.5)p−1).

Setting II: This setting is the same as Setting I, except Θj∗ = n15θ∗.

Here, we use the 2 SD method to choose the critical points in the general
KOO methods:

j̆A = {j ∈ ω|Ăj > log(
1− α

1− α− c
) + 2sdA}

and

j̆C = {j ∈ ω|C̆j >
c

1− α− c
+ p+ 2sdC},

where sdA and sdC are the sample standard deviations of {Ăj} and {C̆j},
respectively.
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c = .2 c = .4 c = .6
V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4

α = .1 .15 .50 .87 1.49 .21 .10 .81 1.56 .10 -.30 .92 1.80

α = .2 .11 .40 .91 1.32 .11 0 .92 1.43 -.19 -.40 1.21 1.72

Table: Values of V1 := 2c− log( 1−α
1−α−c ), V2 := 2(1− α− c)− (1− α),

V3 := log(τω\{1})− log(1− α− c)− 2c, and V4 := tr(Φω\j)− c(1−α−2c)
1−α .
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(a) Setting I
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(b) Setting I
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(c) Setting II
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(d) Setting II
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Conclusion

We show the necessary and sufficient conditions for the strong
consistency of variable selection methods based on the AIC, BIC, and
Cp in high-dimensional-response regression;

We examine the strongly consistent properties of the knock-one-out
methods based on the AIC, BIC, and Cp;

On the basis of the KOO methods, we propose two general KOO
methods that not only remove the penalty terms but also reduce the
conditions for the dimensions and sizes of the predictors.

Random matrix theory is introduced to high-dimensional
high-dimensional-response regression model.

Thank you!
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