Spectral distributions of high-dimensional sample correlation matrices under infinite variance

Johannes Heiny

Ruhr-University Bochum

Joint work with Jianfeng Yao (HKU), Thomas Mikosch and Jorge Yslas (Copenhagen).

Random Matrices and Complex Data Analysis Workshop, December 10-12, 2019, Shanghai

Figure: These are NOT spikes!

Setup for the picture

 Data matrix X = X_n: p × n matrix with iid centered entries and generic variable X ^d = X₁₁.

 $X = (X_{it})_{i=1,...,p;t=1,...,n}$

- Sample covariance matrix $S = \frac{1}{n}XX'$
- Ordered eigenvalues of S

$$\lambda_1(\boldsymbol{S}) \ge \lambda_2(\boldsymbol{S}) \ge \dots \ge \lambda_p(\boldsymbol{S})$$

• Sample correlation matrix

$$\mathbf{R} = (\operatorname{diag}(\boldsymbol{S}))^{-1/2} \boldsymbol{S} (\operatorname{diag}(\boldsymbol{S}))^{-1/2}$$

• **Regular variation** with index $\alpha > 0$:

$$\mathbb{P}(|X| > x) = x^{-\alpha}L(x),$$

where L is a slowly varying function.

- This implies $\mathbb{E}[|X|^{\alpha+\varepsilon}] = \infty$ for any $\varepsilon > 0$.
- Normalizing sequence (a_{np}^2) such that

$$np \, \mathbb{P}(X^2 > a_{np}^2 x) \to x^{-\alpha/2}, \quad \text{as } n \to \infty \text{ for } x > 0.$$

Then $a_{np} = (np)^{1/\alpha} \ell(np)$ for a slowly varying function ℓ .

Diagonal

X with iid regularly varying entries $\alpha \in (0,4)$ and $p = n^{\beta}$ with $\beta \in [0,1]$. We have

$$a_{np}^{-2} \| \boldsymbol{X} \boldsymbol{X}' - \operatorname{diag}(\boldsymbol{X} \boldsymbol{X}') \| \stackrel{\mathbb{P}}{\to} 0,$$

where $\|\cdot\|$ denotes the spectral norm.

$$(\boldsymbol{X}\boldsymbol{X}')_{ij} = \sum_{t=1}^{n} X_{it}X_{jt}.$$

• Weyl's inequality

$$\max_{i=1,\dots,p} \left| \lambda_i (\mathbf{A} + \mathbf{B}) - \lambda_i (\mathbf{A}) \right| \le \|\mathbf{B}\|.$$

 $\bullet~\mathsf{Choose}~\mathbf{A}+\mathbf{B}=\boldsymbol{X}\boldsymbol{X}'~\mathsf{and}~\mathbf{A}=\mathrm{diag}(\boldsymbol{X}\boldsymbol{X}')$ to obtain

$$a_{np}^{-2} \max_{i=1,\dots,p} \left| \lambda_i(\boldsymbol{X}\boldsymbol{X}') - \lambda_i(\operatorname{diag}(\boldsymbol{X}\boldsymbol{X}')) \right| \stackrel{\mathbb{P}}{\to} 0, \quad n \to \infty.$$

• Note: Limit theory for $(\lambda_i(S))$ reduced to (S_{ii}) .

Theorem (Heiny and Mikosch, 2016)

X with iid regularly varying entries $\alpha \in (0,4)$ and $p_n = n^{\beta} \ell(n)$ with $\beta \in [0,1]$.

• If $\beta \in [0,1]$, then

$$a_{np}^{-2} \max_{i=1,\dots,p} \left| \lambda_i(\boldsymbol{X}\boldsymbol{X}') - \lambda_i(\operatorname{diag}(\boldsymbol{X}\boldsymbol{X}')) \right| \stackrel{\mathbb{P}}{\to} 0.$$

2 If $\beta \in ((\alpha/2 - 1)_+, 1]$, then

$$a_{np}^{-2} \max_{i=1,\dots,p} \left| \lambda_i(\boldsymbol{X}\boldsymbol{X}') - X_{(i),np}^2 \right| \stackrel{\mathbb{P}}{\to} 0.$$

Example: Eigenvalues

Figure: Smoothed histogram based on 20000 simulations of the approximation error for the normalized eigenvalue $a_{np}^{-2}\lambda_1(S)$ for entries X_{it} with $\alpha = 1.6$, $\beta = 1$, n = 1000 and p = 200.

- \mathbf{v}_{k} unit eigenvector of $oldsymbol{S}$ associated to $\lambda_{k}(oldsymbol{S})$
- Unit eigenvectors of diag(S) are canonical basisvectors \mathbf{e}_j .

Eigenvectors

X with iid regularly varying entries with index $\alpha \in (0, 4)$ and $p_n = n^{\beta} \ell(n)$ with $\beta \in [0, 1]$. Then for any fixed $k \ge 1$,

$$\|\mathbf{v}_k - \mathbf{e}_{L_k}\|_{\ell_2} \xrightarrow{\mathbb{P}} 0, \quad n \to \infty.$$

Localization vs. Delocalization

Figure: $X \sim \text{Pareto}(0.8)$

Figure: $X \sim N(0, 1)$

Components of eigenvector \mathbf{v}_1 . p = 200, n = 1000.

Point Process of Normalized Eigenvalues

Point process convergence

$$N_n = \sum_{i=1}^p \delta_{a_{np}^{-2}\lambda_i(\boldsymbol{X}\boldsymbol{X}')} \xrightarrow{\mathrm{d}} \sum_{i=1}^\infty \delta_{\Gamma_i^{-2/\alpha}} = N$$

The limit is a PRM on $(0,\infty)$ with mean measure $\mu(x,\infty)=x^{-\alpha/2}, x>0,$ and

 $\Gamma_i = E_1 + \cdots + E_i$, (E_i) iid standard exponential.

Point Process of Normalized Eigenvalues

• Limiting distribution: For $k \ge 1$,

$$\lim_{n \to \infty} \mathbb{P}(a_{np}^{-2}\lambda_k \le x) = \lim_{n \to \infty} \mathbb{P}(N_n(x,\infty) < k) = \mathbb{P}(N(x,\infty) < k)$$
$$= \sum_{s=0}^{k-1} \frac{(x^{-\alpha/2})^s}{s!} e^{-x^{-\alpha/2}}, \quad x > 0.$$

Point Process of Normalized Eigenvalues

• Limiting distribution: For $k \ge 1$,

$$\lim_{n \to \infty} \mathbb{P}(a_{np}^{-2}\lambda_k \le x) = \lim_{n \to \infty} \mathbb{P}(N_n(x,\infty) < k) = \mathbb{P}(N(x,\infty) < k)$$
$$= \sum_{s=0}^{k-1} \frac{(x^{-\alpha/2})^s}{s!} e^{-x^{-\alpha/2}}, \quad x > 0.$$

• Largest eigenvalue

$$\frac{n}{a_{np}^2}\lambda_1(\boldsymbol{S}) \stackrel{\mathrm{d}}{\to} \Gamma_1^{-\alpha/2} \,,$$

where the limit has a *Fréchet distribution* with parameter $\alpha/2$. Soshnikov (2006), Auffinger et al. (2009), Auffinger and Tang (2016), Davis et al. (2014, 2016²), JH and Mikosch (2016)

$$\alpha = 3.99$$

(a) Sample correlation

$$\alpha = 3.99, n = 2000, p = 1000$$

(a) Sample correlation

(b) Sample covariance

$$\alpha = 3, n = 2000, p = 1000$$

$$\alpha = 2.1, n = 10000, p = 1000$$

Limiting spectral distribution of $(\boldsymbol{X}\boldsymbol{X}')$ under $\mathbb{E}[X^2] = \infty$:

• Regular variation with $\alpha < 2$:

$$F_{a_{n+p}^{-2}\boldsymbol{X}\boldsymbol{X}'} o G_{\alpha}^{\gamma}$$
 weakly,

whose density g_{lpha}^{γ} satisfies

$$g^{\gamma}_{\alpha}(x) \sim c \, x^{-1-\alpha/2}, \quad x \to \infty.$$

Ben Arous and Guionnet (2008), Belinschi et al. (2009)

- Assumption: X symmetric and regularly varying with index $\alpha \in (0,2).$
- Goal: For $k \ge 1$, find the limit of

$$\mathbb{E}\left[\int x^k F_{\mathbf{R}}(dx)\right] = \frac{1}{p} \mathbb{E}[\operatorname{tr}(\mathbf{R}^k)]$$

One has

$$\mathbb{E}[\operatorname{tr}(\mathbf{R}^k)] = \sum_{i_1,\dots,i_k=1}^p \underbrace{\sum_{t_1,\dots,t_k=1}^n \mathbb{E}[Y_{i_1t_1}Y_{i_2t_1}\cdots Y_{i_kt_k}Y_{i_1t_k}]}_{:=F(i_1,\dots,i_k)}.$$

Assumption: X symmetric \Rightarrow Y_{ij} symmetric

$$Y_{ij} = \frac{X_{ij}}{\sqrt{\sum_{t=1}^{n} X_{it}^2}}$$

Moments of LSD

$$\begin{split} \frac{1}{p} \mathbb{E}[\operatorname{tr}(\mathbf{R}^{k})] &\to \beta_{k}(\boldsymbol{\gamma}) + \frac{2}{\alpha} \sum_{r=2}^{k-2} \gamma^{r-1} \sum_{q=0}^{r-2} (\Gamma(1-\alpha/2))^{-r+q+1} \\ &\sum_{I \in \mathcal{C}_{r,k}^{(q)}} \sum_{s=1}^{t^{\star}(\widetilde{I})} \left(\frac{\alpha/2}{\Gamma(1-\alpha/2)} \right)^{s} \sum_{T \in \mathcal{C}_{s,|\widetilde{I}|}(\widetilde{I})} \left(\prod_{i=1}^{r-q} \frac{\Gamma(d_{i}(\widetilde{I},T))}{\Gamma(N_{i}(\widetilde{I}))} \right) \\ &\prod_{(i,t) \in \Delta(\widetilde{I},T)} \Gamma\left(\frac{m_{it}(\widetilde{I},T) - \alpha}{2} \right). \end{split}$$

J. Heiny Sample correlation & off-diagonal

• Random walk

$$S_n = X_1 + \dots + X_n, \qquad n \ge 1.$$

(X_i) are iid random variables with generic element X.
 E[X] = 0 and E[X²] = 1.

- Dimension $p = p_n \to \infty$
- Consider iid copies $(S_n^{(i)})_{i\leq p}$ of S_n and define the **point** process

$$N_n = \sum_{i=1}^p \delta_{d_p(S_n^{(i)}/\sqrt{n} - d_p)}$$

We want to prove:

$$N_n = \sum_{i=1}^p \delta_{d_p(S_n^{(i)}/\sqrt{n} - d_p)} \stackrel{\mathrm{d}}{\to} N, \qquad n \to \infty,$$

where N is a Poisson random measure with mean measure $\mu(x,\infty)={\rm e}^{-x},\,x\in\mathbb{R},$ and

$$d_p = \sqrt{2\log p} - \frac{\log\log p + \log 4\pi}{2(2\log p)^{1/2}}.$$

We want to prove:

$$N_n = \sum_{i=1}^p \delta_{d_p(S_n^{(i)}/\sqrt{n} - d_p)} \stackrel{\mathrm{d}}{\to} N, \qquad n \to \infty,$$

where N is a Poisson random measure with mean measure $\mu(x,\infty)={\rm e}^{-x},\,x\in\mathbb{R},$ and

$$d_p = \sqrt{2\log p} - \frac{\log\log p + \log 4\pi}{2(2\log p)^{1/2}}$$

- Note: d_p is the centering and normalizing sequence for the maximum of p iid standard normals.
- By Resnick (2007), this is equivalent to

$$p \mathbb{P}(d_p (S_n/\sqrt{n} - d_p) > x) \to e^{-x}, \qquad x \in \mathbb{R}.$$

H., Mikosch, Yslas (2019+)

Assume that the sequence (p_n) satisfies the following conditions: (C1) $p = O(n^{(s-2)/2})$ for s > 2 if $\mathbb{E}[|X|^s] < \infty$. (C2) $p = \exp(o(n^{1/3}))$ if $\mathbb{E}[\exp(h |X|)] < \infty$ for some h > 0. Then

$$p \mathbb{P}(d_p(S_n/\sqrt{n}-d_p) > x) \to e^{-x}, \qquad x \in \mathbb{R}.$$

H., Mikosch, Yslas (2019+)

(

Assume that the sequence (p_n) satisfies the following conditions: (C1) $p = O(n^{(s-2)/2})$ for s > 2 if $\mathbb{E}[|X|^s] < \infty$. (C2) $p = \exp(o(n^{1/3}))$ if $\mathbb{E}[\exp(h|X|)] < \infty$ for some h > 0. Then

$$p \mathbb{P}(d_p(S_n/\sqrt{n}-d_p) > x) \to e^{-x}, \qquad x \in \mathbb{R}.$$

Precise large deviation bounds of the type

$$\sup_{0 \le y \le \gamma_n} \left| \frac{\mathbb{P}(S_n/\sqrt{n} > y)}{\overline{\Phi}(y)} - 1 \right| \to 0, \quad n \to \infty,$$

Under (C1): $\gamma_n = \sqrt{(s-2)\log n}$, Michel (1974) Under (C2): $\gamma_n = o(n^{1/6})$, Petrov (1972) • Data matrix $X = X_n$: $p \times n$ matrix with iid entries with generic element X.

$$X = (X_{it})_{i=1,...,p;t=1,...,n}$$

• Sample covariance matrix

$$S = XX'$$

Dependent random walks

$$S_{ij} = \sum_{t=1}^{n} X_{it} X_{jt}, \quad i < j.$$

• Off-diagonal point process:

$$N_n^S = \sum_{1 \leq i < j \leq p} \delta_{\widetilde{d}_p(S_{ij}/\sqrt{n} - \widetilde{d}_p)} \,,$$

where $\widetilde{d}_p = d_{p(p-1)/2}$.

Off-diagonal point process

$$N_n^S = \sum_{1 \le i < j \le p} \delta_{\tilde{d}_p(S_{ij}/\sqrt{n} - \tilde{d}_p)}$$

Theorem: H., Mikosch, Yslas (2019+)

Assume that the sequence (p_n) satisfies:

• $p = O(n^{(s-2)/4})$ for s > 2 if $\mathbb{E}[|X|^s] < \infty$.

• $p = \exp(o(n^{1/3}))$ if $\mathbb{E}[\exp(h | X_{11}X_{12}|)] < \infty$ for some h > 0.

Then

 $N_n^S \stackrel{\mathrm{d}}{\to} N$.

Remark: Entries of X do not have to be identically distributed.

Note that

$$N = \sum_{i=1}^{\infty} \delta_{-\log \Gamma_i} \,,$$

where $\Gamma_i = E_1 + \cdots + E_i$, $i \ge 1$, and (E_i) is iid standard exponential.

Note that

$$N = \sum_{i=1}^{\infty} \delta_{-\log \Gamma_i} \,,$$

where $\Gamma_i = E_1 + \cdots + E_i$, $i \ge 1$, and (E_i) is iid standard exponential.

• For fixed k,

$$\widetilde{d}_p \left(S_{(i)} / \sqrt{n} - \widetilde{d}_p \right)_{i=1,\dots,k} \xrightarrow{\mathrm{d}} (-\log \Gamma_i)_{i=1,\dots,k} .$$

• In particular, Jiang (2004)

$$\lim_{n \to \infty} \mathbb{P}\left(\tilde{d}_p\left(S_{(1)}/\sqrt{n} - \tilde{d}_p\right) \le x\right) = \exp(-e^{-x}).$$

• Fang Han's talk on Tuesday, Songxi Chen's talk on Wednesday

Extension to sample correlation matrices

Sample correlation matrix

$$\mathbf{R} = (\operatorname{diag}(\boldsymbol{S}))^{-1/2} \boldsymbol{S} (\operatorname{diag}(\boldsymbol{S}))^{-1/2}$$

Extension to sample correlation matrices

Sample correlation matrix

$$\mathbf{R} = (\operatorname{diag}(\boldsymbol{S}))^{-1/2} \boldsymbol{S} (\operatorname{diag}(\boldsymbol{S}))^{-1/2}$$

Theorem: H., Mikosch, Yslas (2019+)

Assume that the sequence (p_n) satisfies:

- $p = O(n^{(s-2)/4})$ for s > 2 if $\mathbb{E}[|X|^s] < \infty$.
- $p = \exp(o(n^{1/3}))$ if $\mathbb{E}[\exp(h |X_{11}X_{12}|)] < \infty$ for some h > 0.

Then

$$N_n^R = \sum_{1 \le i < j \le p} \delta_{\tilde{d}_p(\sqrt{n}R_{ij} - \tilde{d}_p)} \stackrel{\mathrm{d}}{\to} N \,.$$

Thank you!

 (Z_{it}) : iid field of regularly varying random variables.

• Stochastic volatility model:

$$\boldsymbol{X} = \left(Z_{it} \, \sigma_{it}^{(n)}
ight)_{p imes n}$$

 (Z_{it}) : iid field of regularly varying random variables.

• Stochastic volatility model:

$$oldsymbol{X} = \left(Z_{it} \, \sigma_{it}^{(n)}
ight)_{p imes n}$$

• Generate deterministic covariance structure A:

$$\boldsymbol{X} = \mathbf{A}^{1/2} \mathbf{Z}$$

Davis et al. (2014)

Heavy Tails and Dependence

 (Z_{it}) : iid field of regularly varying random variables.

• Dependence among rows and columns:

$$X_{it} = \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} h_{kl} Z_{i-k,t-l}$$

with some constants h_{kl} . Davis et al. (2016)

Heavy Tails and Dependence

 (Z_{it}) : iid field of regularly varying random variables.

• Dependence among rows and columns:

$$X_{it} = \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} h_{kl} Z_{i-k,t-l}$$

with some constants h_{kl} . Davis et al. (2016)

• Relation to iid case:

$$\boldsymbol{X}\boldsymbol{X}' = \sum_{l_1, l_2=0}^{\infty} \sum_{k_1, k_2=0}^{\infty} h_{k_1 l_1} h_{k_2 l_2} \boldsymbol{Z}(k_1, l_1) \boldsymbol{Z}'(k_2, l_2) ,$$

where

$$\mathbf{Z}(k,l) = (Z_{i-k,t-l})_{i=1,\ldots,p;t=1,\ldots,n}, \quad l,k \in \mathbb{Z}.$$

Heavy Tails and Dependence

 (Z_{it}) : iid field of regularly varying random variables.

• Dependence among rows and columns:

$$X_{it} = \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} h_{kl} Z_{i-k,t-l}$$

with some constants h_{kl} . Davis et al. (2016)

• Relation to iid case:

$$\boldsymbol{X}\boldsymbol{X}' = \sum_{l_1, l_2=0}^{\infty} \sum_{k_1, k_2=0}^{\infty} h_{k_1 l_1} h_{k_2 l_2} \boldsymbol{Z}(k_1, l_1) \boldsymbol{Z}'(k_2, l_2) ,$$

where

$$\mathbf{Z}(k,l) = (Z_{i-k,t-l})_{i=1,...,p;t=1,...,n}, \quad l,k \in \mathbb{Z}.$$

• Location of squares:

$$oldsymbol{M}_{ij} = \sum_{l \in \mathbb{Z}} h_{il} h_{jl}, \qquad i, j \in \mathbb{Z}.$$

• For $s \ge 0$,

$$X_n(s) = (X_{i,t+s})_{i=1,\dots,p; t=1,\dots,n}, \quad n \ge 1.$$

Then $\boldsymbol{X}_n = \boldsymbol{X}_n(0)$.

• Autocovariance matrix for lag s

 $\boldsymbol{X}_n(0)\boldsymbol{X}_n(s)'$

• Limit theory for singular values of such matrices.

Autocovariance Matrices

• Autocovariance matrix for lag s

$$\mathbf{C}_{n}(s) = \begin{cases} \mathbf{X}_{n}(0)\mathbf{X}_{n}(s)', & \text{if } \alpha < 2(1+\beta), \\ \mathbf{X}_{n}(0)\mathbf{X}_{n}(s)' - \mathbb{E}[\mathbf{X}_{n}(0)\mathbf{X}_{n}(s)'], & \text{if } \alpha > 2(1+\beta), \end{cases}$$

• Consider

$$\mathbf{P}_n(s_1, s_2) = \sum_{s=s_1}^{s_2} \mathbf{C}_n(s) \mathbf{C}_n(s)' \text{ for fixed } 0 \le s_1 \le s_2.$$

Autocovariance Matrices

٩

$$(\boldsymbol{M}(s))_{ij} = \sum_{l \in \mathbb{Z}} h_{i,l} h_{j,l+s}, \qquad i, j \in \mathbb{Z}.$$

For $0 \leq s_1 \leq s_2 < \infty$, we define the positive semi-definite matrix

$$\mathbf{K}(s_1, s_2) = \sum_{s=s_1}^{s_2} \boldsymbol{M}(s) \boldsymbol{M}(s)'$$

• Eigenvector approximation

$$\|\boldsymbol{y}_{i}(s_{1},s_{2})-\mathbf{u}_{b(i)}^{a(i)}(s_{1},s_{2})\|_{\ell_{2}} \xrightarrow{\mathbb{P}} 0, \qquad n \to \infty.$$

Autocovariance eigenvectors

Autocovariance eigenvectors

37 / 30