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Empirical Spectral Distribution

RN : an N × N (random) matrix with eigenvalues λ1, λ2, . . . , λN .

Note that the eigenvalues can be complex random variables.

Empirical Spectral Distribution (ESD) of RN is the (random) probability measure

µN =
1

N

N∑
i=1

δλi .

When all eigenvalues are real, its cumulative form and its moments are respectively

ECDF (x) =
1

n
#eigenvalues ≤ x and,

βh(RN) =

∫
xhdµN = N−1

N∑
i=1

λhi = N−1 Tr(Rh
N).
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Stieltjes transform

Stieltjes transform of any probablity distribution F on R is

mF (z) =

∫
1

x − z
dF (x), z ∈ C+.

It is always defined.

Determines the distribution uniquely, convergence of Stieltjes transform if and
only convergence in distribution...

Its moments are defined as

βh =

∫
xhdF (x).

LSD are often expressed through their Stietljes transform.
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Two notions of convergence

Limiting spectral distribution (LSD): If this ESD converges weakly (for our
purposes, almost surely or in probability) to a probability distribution, then the
limit is called the LSD.

In this talk, all limit measures are non-random.

Tracial/algebraic/non-commutative convergence: For every polynomial π,

limN−1 Tr(π(RN ,R
∗
N)) exists = φ(π(r , r∗)) (say).

(i) If RN is symmetric, tracial convergence implies LSD provided the limit traces
{limN−1 Tr(Rh

N))} identifies a unique probability distribution with these as the
moments. This is indeed the moment method.

(ii) Tracial convergence notion can be extended to joint tracial convergence for
multiple sequences. This would then define a non-commutative algebra A (say)
(defined via dummy variables r , r∗ etc..) along with a linear functional φ (say)
(defined via the limit values as above). Such a pair (A, φ) is an example of a
non-commutative ∗-probability space.
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Two methods to prove convergence

When the eigenvalues are all real (the matrix is real symmetric), there are two
common methods to establish LSD:

Moment method.

Stieltjes transform method.
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Moment method for real symmetric RN

Recalll that the h-th order moment of the ESD of RN equals

βh(RN) :=
1

N
Tr(Rh

N).

(M1) (Moment convergence) For every h ≥ 1,E (βh(RN))→ βh,

(M2) E (βh(RN)− E (βh(RN)))2 → 0, ∀h

(M4) (Borel-Cantelli)
∑∞

N=1 E (βh(RN)− E (βh(RN)))4 <∞, ∀h ≥ 1, and

(C) (Unique limit)
∞∑
h=1

β
− 1

2h

2h =∞ (Carleman’s condition).

If (M1), (M2) and (C) hold, then ESD of RN converges in probability to the
distribution F which is determined uniquely by the moments {βh}. The
convergence is almost sure if (M4) holds.

Usually (M1) is the hardest to establish. See Bose (book, 2018) for examples.
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Stieltjes transform method

The Stieltjes transform of the ESD of RN equals

mN(z) =
1

N

∑ 1

λi − z
=

1

N
Tr(RN − zI )−1).

Express mN+1(z) in terms of mN(z) and use (martingale or any other) techniques
to push the relation to a limiting functional equation.

The solution, (must show is unique) is the Stieltjes transform of the LSD.
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Three basic matrices

Sample size: n.

Dimension: N = N(n). Sometimes we write p instead of N.

Both N, n→∞,
N/n→ γ ∈ [0, ∞).

(A) The IID matrix: Suppose Z is the N × n matrix with iid random random
variables (with mean 0, variance 1, plus usually finiteness of (some) moments..).

For the next few slides, assume finite fourth moment.

(B) The sample covariance matrix: SN = n−1ZZ∗.

(C) The Wigner matrix: N−1/2WN where WN is real symmetric whose elements
are IID with mean zero, variance 1.

All limits in this talk are universal. That is, they do not depend on the underlying
distribution of the random variables except through their second moments.
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Basic LSD results for SN and WN

(1) The LSD of N−1/2WN is the semi-circle law : Wigner (1955/1956...).

Suppose

SN = n−1ZZ∗.

(2) When γ 6= 0, LSD of SN exists and is called the Marchenko-Pastur Law
(1967).

(3) When γ = 0, LSD of SN is degenerate (at 0). The LSD of√
n

N
(SN − IN)

is the also the semi-circle law : Bai and Yin (1988).

All three results can be proved by either the moment method (Bose (2018, book))
or the Stieltjes transform method (Bai, book).
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LSD of A1/2ZZ ∗A1/2

Now suppose A is an N × N non-negative random matrix whose LSD exists.

(4) the LSD of N−1/2A1/2WA1/2 exists: Bai and Zhang (2010).

(5) when γ = 0, the LSD of
√

n
N

(
n−1A1/2ZZ∗A1/2 − A

)
exists: Pan and Gao

(2009), Bao (2012) and is same as that in (4).
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A1/2ZBZ ∗A1/2

Now suppose B is an n × n symmetric non-random matrix (with tracial
convergence and LSD...).

(6) when γ = 0, the LSD of
√
nN−1(n−1A1/2ZBZ∗A1/2 − n−1 Tr(B)A) exists:

Wang and Paul (2014).
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Extensions?

Suppose we have several of the Z (independent), A and B type matrices.

What kind of LSD results should be valid? (different for γ = 0 and γ 6= 0).

How to establish them? (Moment method? Stieltjes transform?)

Any use for such results?
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A general set up

• {Zu = ((εu,i,j))N×n}, 1 ≤ u ≤ U.

• {εu,i,j} are independently distributed with mean 0, variance 1 and all moments
uniformly bounded.

• {Ai}: class of N × N matrices, which converge jointly.

• {Bi}: class of n × n matrices, each of which converges tracially.
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Theorem 1, joint convergence

Define
• P =

(∏kl
i=1

1
nAti ZjiBsiZ

∗
ji

)
Atkl +1

,

• G =
(∏kl

i=1
1
n Tr (Bsi )

)∏kl+1
i=1 Ati

• when γ > 0, the collection {P}, converges jointly (in probability).

• when γ = 0, the collection {
√
nN−1(P−G)}, converges jointly (in probability).

Limits can be expressed in terms of free variables.

Proved by checking (M1) and (M2) conditions.

By-product:

• All traces are asymptotically normal.
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Theorem 2, LSD for any symmetric polynomial

Then using the moment method, LSD exists for:

• any symmetric polynomial in {P} when γ > 0

• any symmetric polynomial in {
√
nN−1(P−G)} when γ = 0.

Proved by checking condition (C).

For specific polynomials, moment condition can be reduced by truncation
arguments.

See Bhattacharjee and Bose (IJPAM 2017/2018, RMTA 2016), Bose and
Bhattacharjee (book 2018).

Stieltjes transform formulae (recursive equations) are also derived.

All existing results on covariance-type matrices, including the ones mentioned
earlier follow.
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Linear time series

General model, MA(q):

Yt =

q∑
j=0

ψjXt−j t ≥ 1. (0.1)

Xt ’s are i.i.d. N-dimensional vectors with mean 0 and variance-covariance matrix
IN .

ψj are N × N (non-random) coefficient matrices. ψ0 = I . N = N(n)→∞ such
that N

n → γ ∈ [0,∞).

q can be infinite but that needs additional restrictions on {ψi}.

MA(0) is the i.i.d. process.

Sometimes we write p for N.
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Autocovariance matrix sequence

The sample autocovariance matrix of order i of {Yt} equals

Γ̂i :=
1

n

n∑
t=i+1

YtY
∗
t−i .

They are all non-symmetric except Γ̂0.

What is the behaviour of (polynomials) of these matrices?
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Consequences of Theorems 1 and 2

In both γ = 0 and γ > 0 cases,

• tracial convergence of polynomials in these matrices follow as consequence of
Theorem 1.

• convergence of the ESD of any polynomial of the autocovariances which is a
symmetric matrix, follows from Theorem 2 once we assume that the {ψj}
matrices converge jointly.

In particular all LSD results in the literature on symmetrized autocovariance
matrices (such as Γi + Γ∗i , ΓiΓ

∗
i , Γi + Γ∗i + Γj + Γ∗j ) etc, follow.

One can even combine these matrices across several independent time series
(should be useful for two or multi-sample problems..) and the above results are
still automatically guaranteed.

We have only very limited success so far on the convergence of the spectral
distribution in non-symmetric cases.
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Some applications

• All traces are asymptotically normal (useful in testing).

• Applications: determination of the order q, testing for white noise.... (see book).
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Simulation 1: ECDF of Γ̂0 for MA(0)

Γ̂0 =
1

n

n∑
t=1

XtX
∗
t .
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Figure: LSD of Γ̂0 is the Marchenko-Pastur law (well known in RMT).
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Simulation 2

Model 1 (MA(0)): Yt = Xt .

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

eigenvalues, Model 1

E
C

D
F

(Gamma1)t(Gamma1)
(Gamma2)t(Gamma2)
(Gamma3)t(Gamma3)
(Gamma4)t(Gamma4)

Figure: Identical ECDF of Γ̂uΓ̂∗
u , 1 ≤ u ≤ 4 for N = n = 300. LSD known from BB.
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Simulation 3

Model 2 Yt = Xt + ANXt−1, AN = 0.5IN .
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Figure: ECDF of Γ̂1Γ̂∗
1 different from ECDF of Γ̂uΓ̂∗

u , 2, 3, 4. N = n = 300. Spectral
distribution of AN is degenerate at 0.5. LSD known from BB.
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ESD of Γ̂1 for MA(0), n = 500

Γ̂1 =
1

n

n∑
t=1

XtX
∗
t−1.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

● ●●●

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5

real part of eigenvalues, p= 250

im
ag

in
ar

y 
pa

rt
 o

f e
ig

en
va

lu
es

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●
●
● ●
●
●

●

●
●●

●
●●

●●
●
●

●●●
●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−1.5 −1.0 −0.5 0.0 0.5 1.0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

real part of eigenvalues, p= 500

im
ag

in
ar

y 
pa

rt
 o

f e
ig

en
va

lu
es

Figure: That this LSD exists shall be argued soon.
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Non-symmetric matrices

Tracial moments cannot give the existence of the LSD since they do not capture
the moments of the ESD which is now on the complex plane.

One of the major steps in the proof for any non-symmetric matrix is to establish
suitable bounds for the smallest singular value of a related matrix.

We shall clarify at the end how this step helps via log-potential.

Arup Bose Indian Statistical Institute, Kolkata Walid Hachem Université Paris-Est Marne-la-Vallée, FranceSmallest singular value and limit eigenvalue distribution of a class of non-Hermitian random matrices with statistical application



(X (n) = [x
(n)
ij ]N

(n)−1,n−1
i,j=0 )n≥1 is a sequence of complex random matrices such that

Assumption 1. For each n ≥ 1, {x (n)
ij }

N(n)−1,n−1
i,j=0 are i.i.d. with

Ex (n)
00 = 0,

E|x (n)
00 |2 = 1/n, and

supn n
2E|x (n)

00 |4 = m4 <∞.

Note the different scaling of the entries.

(N(n))n≥1, a sequence of positive integers, diverges to ∞ as n→∞.

N/n→ γ, 0 < γ <∞ as n→∞.

Think of N as the dimension of the vectors and n as the sample size (number of
observations).
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For any matrix M ∈ Cn×n, s0(M) ≥ · · · ≥ sn−1(M): the singular values of M.

Assumption 2. A(n) ∈ Cn×n: sequence of deterministic matrices such that,

0 < inf
n
sn−1(A(n)) ≤ sup

n
s0(A(n)) <∞.

• The Identity matrix trivially satisfies Assumption 2.

• The circulant matrix

J(n) =


0 1

1
. . .
. . .

. . .

1 0

 ∈ Rn×n (0.2)

also satisfies Assumption 2. Its ESD converges to the uniform distribution on the
circle of unit radius.
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Assumption 3 The random variables x
(n)
00 satisfy supn |nE(x

(n)
00 )2| < 1.

Assumption 3 essentially says that the xij are not real.

This is fine for applications in wireless communications and signal processing.

Not acceptable for time series applications.

This assumption is due to the application of a Berry-Esseen bound as a tool in
exactly one of the steps in the proof. We are trying to remove that.
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A general smallest singular value result

Let ‖ · ‖ denote the spectral norm of a matrix.

Consider the random matrix X (n)A(n)X (n)∗ − zIN , where z is an arbitrary non-zero
complex number and IN is the identity matrix of dimension N.

Theorem 3 Suppose Assumptions 1, 2 and 3 hold. Let C be a positive constant.
Then, there exist α, β > 0 such that for each z ∈ C \ {0},

P
[
sN−1(X (n)A(n)X (n)∗ − z) ≤ t, ‖X‖ ≤ C

]
≤ c

(
nαt1/2 + n−β

)
+ exp(−c ′n),

where the constants c , c ′ > 0 depend on C , z , and m4 only. In particular the
result is true for XJX ∗.

Note that we DO NOT (yet) have the result for matrices with real entries.

We next state our main LSD result. Then we shall explain the connection how
Theorem 3 helps in proving Theorem 4.
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LSD result for Γ̂1 =
∑

XtX
∗
t−1

To state our result on LSD, let for any 0 < γ <∞,

g(y) =
y

y + 1
(1− γ + 2y)2, (0 ∨ (γ − 1)) ≤ y ≤ γ. (0.3)

Then g−1 exists on the interval [0 ∨ ((γ − 1)3/γ), γ(γ + 1)] and maps it to
[0 ∨ (γ − γ−1), γ]. It is an analytic increasing function on the interior of the
interval.

Note that g is a cubic polynomial and so a formula can be given for its inverse.
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Theorem 4. Suppose Assumptions 1 and 3 hold. Then, the LSD of
∑

XtX
∗
t−1

exists in probability. The limit measure µ is rotationally invariant on C. Let
F (r) = µ({z ∈ C : |z | ≤ r}), 0 ≤ r <∞ be the distribution function of the radial
component.

If γ ≤ 1, then

F (r) =

 γ−1g−1(r2) if 0 ≤ r ≤
√
γ(γ + 1),

1 if r >
√
γ(γ + 1).

If γ > 1, then

F (r) =


1− γ−1 if 0 ≤ r ≤ (γ − 1)3/2/

√
γ,

γ−1g−1(r2) if (γ − 1)3/2/
√
γ < r ≤

√
γ(γ + 1),

1 if r >
√
γ(γ + 1).
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The support of µ is the disc {z : |z | ≤
√
γ(γ + 1)} when γ ≤ 1.

When γ > 1, the support is the ring {z : (γ − 1)3/2/
√
γ ≤ |z | ≤

√
γ(γ + 1)}

together with the point {0} where there is a mass 1− γ−1.

Moreover, F (r) has a positive and analytical density on the open interval
(0 ∨ sign(γ − 1)|γ − 1|3/2/

√
γ,
√
γ(γ + 1)).

This density is bounded if γ 6= 1. If γ = 1, then the density is bounded everywhere
except when r ↓ 0.
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A cumbersome closed form expression for g−1 (and hence for F (·)) can be
obtained by calculating the root of a third degree polynomial. For the special case
γ = 1, g−1 is given by

g−1(t) =
t1/3

2

[1 +

√
1− t

27

]1/3

+

[
1−

√
1− t

27

]1/3
 , 0 ≤ t ≤ 2.
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Eigenvalue realizations corresponding to the cases where γ = 0.5 and γ = 2 are
shown in the next Figure.
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Figure: Eigenvalue realizations and LSD support.
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Plot of F

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

: (N, n) = (500, 1000)

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

: (N, n) = (1000, 500)

Figure: Plots of F (r) (plain curves) and their empirical realizations (dashed curves).
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Statistical testing with singular values

LSD results and also normality of trace results are useful for graphical and
significance tests of hypothesis.

The book has examples using the symmetrized autocovariances. This amounts to
using the singular values. There is loss of information in dealing with singular
values rather than eigenvalues.
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Statistical applications with eigenvalues

Theorem 4 gives the so-called null distribution of the eigenvalues under white
noise (IID) hypothesis. To test other hypothesis, we need LSD results for general
MA(q) models. This problem is non-trivial.
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log-potential

The logarithmic potential of a probability measure µ on C is the C→ (−∞,∞]
superharmonic function defined as

Uµ(z) = −
∫
C

log |λ− z | µ(dλ) (whenever the integral is finite).

µ can be recovered from Uµ(·): let ∆ = ∂2
x + ∂2

y = 4∂z∂z̄ for z = x + ıy ∈ C be
the Laplace operator defined on

C∞c (C) = {ϕ : ϕ is a compactly supported real valued smooth function on C}.

Then
µ = −(2π)−1∆Uµ in the sense that (0.4)∫

C
ϕ(z) µ(dz) = − 1

2π

∫
C

∆ϕ(z)Uµ(z) dz , ∀ϕ ∈ C∞c (C).
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Convergence of the logarithmic potentials for Lebesgue almost all z ∈ C implies
the weak convergence of the underlying measures under a tightness criterion.

Observe that∑
XtX

∗
t−1 is essentially the same as the matrix as XJX ∗ = Y (say).

The logarithmic potential of the spectral measure of Y equals

Uµn(z) = − 1

N

∑
log |λi − z | = − 1

N
log | det(Y − z)|

= − 1

2N
log det(Y − z)(Y − z)∗ = −

∫
log λ νn,z(dλ),

where the probability measure νn,z is the singular value distribution of Y − z ,
given as

νn,z =
1

N

N−1∑
i=0

δsi (Y−z).

Thus we need to study the asymptotic behavior of Uµn(z) for Lebesgue almost all
z ∈ C.
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Lemma 4.3 of Bordenave and Chafai Let (Mn) be a sequence of random
matrices with complex entries. Let ζn be its spectral measure and let σn,z be the
empirical singular value distribution of Mn − z . Assume that

(i) for almost every z ∈ C, there exists a probability measure σz such that
σn,z ⇒ σz in probability,

(ii) log is uniformly integrable in probability with respect to the sequence (σn,z).

Then, there exists a probability measure ζ such that ζn ⇒ ζ in probability, and
furthermore,

Uζ(z) = −
∫

log λ σz(dλ) C− a.e.
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Thus we need to establish that:

Step 1: for almost all z ∈ C, νn,z ⇒ νz (a deterministic probability measure) in
probability.

Step 2: the function log is uniformly integrable with respect to the measure νn,z
for almost all z ∈ C in probability. That is,

∀ε > 0, lim
T→∞

lim sup
n≥1

P
[∫ ∞

0

| log λ| 1| log λ|≥T νn,zd(λ) > ε

]
= 0. (0.5)

Then there exists a probability measure µ such that µn ⇒ µ in probability, and
Uµ(z) = −

∫
log |λ| ν̌z(dλ) C-almost everywhere. It would then remain to

identify the measure µ to complete the proof of Theorem 4.
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Steps 1 and 2

Step 1 Proved by convergence of the trace of resolvent. There one first replaces
trace by its expectation, then uses Gaussian approximation, PN inequality.

Step 2 requires control of both, the small eigenvalues and the large eigenvalues.
The latter is achieved trivially (since spectral norm of X is almost surely
bounded). The former is achieved by Theorem 3.

For detailed proof, see Bose and Hachem (2018).
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Why is the general case difficult?

Consider
Yt = Xt + ψ1Xt−1.

Then
Γ̂1 =

∑
YtYt−1.

Substituting the first equation in the second, we get several terms which involve
the autocovariance matrices of order 0 and 1 of {Xt} together with the matrix ψ1.
This is now non-symmetric and a complicated expression to deal with. It gets
even tougher with the increase in the order of the process.
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THANK YOU !
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