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Bootstrap for sample covariance matrices

Let X1, . . . ,Xn ∈ Rp be i.i.d. observations, and let Σ̂ be the sample
covariance matrix.

Let T = ϕ(Σ̂) denote a statistic of interest.

We would like to estimate var(T ), or more generally, approximate the
sampling distribution of T .

The non-parametric bootstrap offers a general way to solve these problems.

Non-parametric bootstrap.

For: b = 1, . . . ,B:

Sample n points X ∗1 , . . . ,X
∗
n with replacement from {X1, . . . ,Xn}.

Form the sample covariance matrix Σ̂∗ associated with X ∗1 , . . . ,X
∗
n .

Compute T ∗b = ϕ(Σ̂∗).

Return: the estimate 1
B

∑B
b=1(T ∗b − T̄ ∗)2 for var(T ).
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Some past work

In 1985, Beran and Srivastava showed that the standard
non-parametric bootstrap generally works for smooth functionals of Σ̂
when p � n. (Exceptions arise for non-smooth functionals, or tied
population eigenvalues.)

The paper Hall, Lee, Park, Paul (2009) develops a remedy for tied
eigenvalues, as well as a generalization to functional data. (A good
literature survey is also provided for many other papers in the p � n
setting between 1985 and 2009.)

However, p � n or p � n, relatively little is known about bootstrap
consistency.

F There are many opportunities for future work on bootstrap methods
in high-dimensional inference, especially in connection with random
matrix theory.
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Some recent developments

Recently, El Karoui and Purdom (2019) have studied the non-parametric
bootstrap, and have demonstrated some negative empirical results for
λ1(Σ̂). They also prove bootstrap consistency for a fixed number of the
largest sample eigenvalues when Σ has low effective rank.

Han, Xu and Zhou (2018) have studied a Gaussian multiplier bootstrap to
approximate the distribution of statistics of the form

T = sup
‖u‖2≤1,‖u‖0≤s

√
n
∣∣u>(Σ̂− Σ

)
u
∣∣

and variants thereof, in the case of sparse test vectors with s � n.

Naumov, Spokoiny and Ulyanov (2019) have studied multiplier bootstrap
methods for approximating the error distribution of spectral projectors,
e.g. statistics of the form T = n‖v̂1v̂

>
1 − v1v

>
1 ‖2

F , where v1 and v̂1 the
leading population and sample eigenvectors. Consistency is established when
Σ has low effective rank.
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Difficulties in high dimensions

Why do difficulties arise when p is large?

If it were possible, we would prefer to draw an i.i.d. sample from the
(unknown) distribution P underlying D = {X1, . . . ,Xn}.

Instead, the bootstrap uses an i.i.d. sample from the empirical
distribution P̂, which places mass 1/n at each point in D.

Key difficulty: If p is large, and P does not have “low-dimensional
structure”, then P̂ may be a poor substitute for P.
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Possible approaches to bootstrapping in high dimensions

1 When P does have low-dimensional structure, the non-parametric bootstrap
can still succeed.

2 Even if P does not have such structure, we may instead rely on special
invariance properties of the statistic T .

For instance, universality results may indicate that the fluctuations of
T governed by a small set of “relevant” parameters.

If we can determine the relevant parameters (say θ), then we can
sample from a suitable parametric distribution Pθ̂.

key point: L
(
T (P)

)
≈ L

(
T (Pθ̂) | D

)
even though P 6≈ Pθ̂.
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Two parts

Part I: Bootstrapping spectral statistics in high dimensions

with A. Blandino, and A. Aue

Biometrika, 2019

Part II: Bootstrapping the operator norm in high dimensions: Error
estimation for covariance matrices and sketching

with N. B. Erichson and M. W. Mahoney

https://arxiv.org/abs/1909.06120
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A basic model for studying covariance matrices

Let Σ ∈ Rp×p be a population covariance matrix.

Suppose X ∈ Rn×p is a data matrix with i.i.d. rows generated as

Xi = Σ1/2Zi (1)

where the vectors Z1, . . . ,Zn ∈ Rp have i.i.d. entries with E[Zij ] = 0,
E[Z 2

ij ] = 1 and E[Z 4
ij ] =: κ > 1.

Define the sample covariance matrix

Σ̂ = 1
nX
>X . (2)

8 / 48



Linear Spectral Statistics (LSS)

A natural class of prototype statistics for investigating bootstrap consistency are
linear spectral statstics, which have the form

T = 1
p

∑p
j=1 f (λj(Σ̂)), (3)

where f is a smooth function on [0,∞).

Examples:

The choice f (x) = log(x) leads to log(det(Σ̂)).

The choice f (x) = xk , leads to tr(Σ̂k)

The normal log-likelihood ratio statistic for testing sphericity is

p log(tr(Σ̂))− log(det(Σ̂)).

Even some non-linear spectral statistics are “asymptotically equivalent” to
transformations of LSS (cf. Dobriban 2017)
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Background ideas for developing a new bootstrap

Beginning with fundamental works of Jonsson (1982) and Bai and
Silverstein (2004), a substantial literature has developed increasingly
general central limit theorems for LSS:

(e.g. Pan and Zhou (2008), Lytova and Pastur (2009), Bai, Wang and Zhou (2010),
Scherbina (2011), Zheng (2012), Wang and Yao (2013), Naijm and Yao (2016), Li, Li
and Yao (2018), Hu, Li, Liu and Zhou (2019) among others)

In particular, if E[Z 4
ij ] = 3, and p/n→ c ∈ (0,∞), then under “standard

assumptions” we have

p(T − E[T ]) ⇒ N(0, σ2),

where

σ2 =
−1

2π2

‹
f (z1)f (z2)

(m(z1)−m(z2))2

d

dz1
m(z1)

d

dz2
m(z2)dz1dz2
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Background ideas for developing a new bootstrap

p(T − E[T ])⇒ N(0, σ2)

Important property: Under conditions more general than E[Z 3
ij ] = 3, the

variance σ2 is essentially determined by the limiting spectral distribution of
Σ.

Roughly speaking, this means that under certain conditions, the limit laws
of LSS are mainly governed by just (λ1(Σ), . . . , λp(Σ)), rather than the
entire matrix Σ.

This is a major reduction in complexity.
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A “parametric bootstrap” approach

More good news: The eigenvalues Λ = diag(λ1(Σ), . . . , λp(Σ)) can be
estimated well in high dimensions. In particular, for consistent estimation
of the population LSD, it is not necessary to use sparsity and/or low-rank
conditions.

(cf. El Karoui (2008), Mestre (2008), Li and Yao (2014), Ledoit and Wolf (2015), Kong
and Valiant (2017), among others)

Intuitive procedure: Generate a “new dataset” X ∗ that nearly matches
the observed data X with respect to Λ.

Then, we compute the statistic T ∗ arising from the “new data” X ∗.

(This is akin to a parametric bootstrap.)

One extra detail: The kurtosis κ = E[Z 4
ij ] matters too, but it’s estimable.
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Proposed method: Spectral Bootstrap

Goal. Approximate the distribution of T = 1
p

∑p
j=1 f (λj(Σ̂)).

Before resampling, first compute estimates κ̂ and Λ̂.

Algorithm. (Spectral Bootstrap)

For b = 1, . . . ,B :

Generate a random matrix Z∗ ∈ Rn×p whose entries Z∗ij are drawn

i.i.d. from Pearson(0, 1, 0, κ̂). (Recall Xi = Σ1/2Zi )

Compute Σ̂∗ = 1
n Λ̂1/2(Z∗>Z∗)Λ̂1/2. (Note Σ̂ = 1

nΣ1/2Z>ZΣ1/2)

Compute the eigenvalues of Σ̂∗, and denote them by (λ∗1 , . . . , λ
∗
p).

Compute the statistic, T ∗b = 1
p

∑p
j=1 f (λ∗j )

Return: the empirical distribution of the values T ∗1 , . . . ,T
∗
B .
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Generalizing to other spectral statistics

Let ψ : Rp → R be a generic (non-linear) function, and consider the
statistic

T = ψ(λ1(Σ̂), . . . , λp(Σ̂)).

Key point: To bootstrap T , we only need change the last step.

(This is a distinct benefit of the bootstrap in relation to formulas.)

For b = 1, . . . ,B :

. . .

Compute the eigenvalues of Σ̂∗, and denote them by (λ∗1, . . . , λ
∗
p).

Compute the statistic, T ∗b = ψ(λ∗1, . . . , λ
∗
p)

Return: the empirical distribution of the values T ∗1 , . . . ,T
∗
B .
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Estimating kurtosis

Recall κ = E[Z 4
ij ], and all row vectors satisfy Xi = Σ1/2Zi .

Our estimate of κ is based on a general formula for the variance of a
quadratic form

κ = 3 +
Var(‖X1‖2

2)−2‖Σ‖2
F∑p

j=1 σ
4
j

.

All the quantities on the right side have ratio-consistent estimators when
p � n under standard conditions.

The estimation of ‖Σ‖2
F was handled previously in Bai and Saranadasa

(1996), but it seems that a consistent estimate for κ has not been
available in the high-dimensional setting.

An estimate of κ may also be of independent interest as a diagnostic tool
for checking if data are approximately Gaussian.
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Estimating eigenvalues

We use the Quest method (Ledoit and Wolf, 2015).

For bootstrapping LSS, the essential issue is to use eigenvalue estimates λ̂1, . . . , λ̂p that
lead to a consistent estimate of the population LSD.

Let Hp denote the spectral the distribution function associated with λ1(Σ), . . . , λp(Σ),

Hp(t) = 1
p

∑p
j=1 1{λj(Σ) ≤ t}.

Then, an estimate Ĥp may be formed by taking the estimates λ̂1, . . . , λ̂p as the quantiles.

Consistency. If there is a population LSD H satisfying

Hp ⇒ H,

then the Quest estimator Ĥp satisfies the following limit under standard assumptions,

Ĥp ⇒ H almost surely.

Note: Other spectrum estimation methods are also compatible with the proposed
bootstrap — provided that the above limit holds.
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Main result: bootstrap consistency

Assumptions in brief:

p/n→ c ∈ (0,∞)

λp(Σ) and λ1(Σ) bounded away from 0 and ∞

Finite 8th moment: E[Z 8
11] <∞.

Hp ⇒ H.

Asymptotic “regularity” of population eigenvectors (more later)

Theorem 1 (LBA 2019)

Let dLP denote the Lévy-Prohorov metric. Then, under the stated assumptions,
the following limit holds as (n, p)→∞,

dLP

(
L
(
p(T ∗ − E[T ∗|X ])|X

)
, L
(
p(T − E[T ])

))
→ 0 in probability.
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High-level comments on the proof

The proof draws substantially from the arguments in Najim and Yao (2016),
based on the Helffer-Sjöstrand formula. This formula allows for the following
distributional approximation as (n, p)→∞,

L
{
p(T − E[T ])

}
≈ L{φf (Gn)},

where φf is a linear functional, and Gn = Gn(z) is a centered Gaussian process

that arises from the empirical Stieltjes transform 1
p tr
(
(Σ̂− zIp)−1

)
.

In the “bootstrap world”, there is a corresponding conditional approximation,

L{p(T ∗ − E[T ∗|X ])|X} ≈ L{φf (G∗n )|X}.

Finally, the consistency of Ĥ and κ̂ are used to obtain the conditional
approximation

L{φf (G∗n )|X} ≈ L{φf (Gn)},

by comparing the covariance functions of G∗n and Gn.
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Finally, the consistency of Ĥ and κ̂ are used to obtain the conditional
approximation

L{φf (G∗n )|X} ≈ L{φf (Gn)},

by comparing the covariance functions of G∗n and Gn.
18 / 48



Regularity of eigenvectors

Let U be the matrix of eigenvectors of Σ, and consider the non-random quantity

Kp(z1, z2) :=
1

p

p∑
j=1

[
UDn(z1)U>

]
jj

[
UDn(z2)U>

]
jj

where z1, z2 ∈ C \ R, and Dn(·) ∈ Cp×p is a diagonal matrix that only depends on the
spectrum of Σ.

Also let K ′p(z1, z2) :=
1

p

p∑
j=1

[
Dn(z1)

]
jj

[
Dn(z2)

]
jj
.

Regularity of eigenvectors. We say that the eigenvectors of Σ are regular if for any
z1, z2 ∈ C \ R, as (n, p)→∞

Kp(z1, z2) = K ′p(z1, z2) + o(1).

Remarks. The papers Pan and Zhou (2008) and Najim and Yao (2016) show that
unless κ = 3, a limit law for standardized LSS may not exist unless U has some
regularity. Nevertheless, empirical results suggest that such regularity may be “typical”.
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Regularity of eigenvectors (cont.)

Example 1. (Rank k perturbations, k →∞).

Suppose λ1(Σ) is bounded away from ∞, and let Λ be otherwise
unrestricted.

If U is of the form
U = Ip×p − 2Π,

where Π is any orthogonal projection matrix of rank k , and k = o(p), then
the eigenvectors are regular.

This is a fairly substantial perturbation from the diagonal case.
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Regularity of eigenvectors (cont.)

Example 2. (Spiked covariance models).

Suppose Λ is of the form

Λ = diag(λ1, . . . , λk , 1, . . . , 1)

where k = o(p), and λ1 = λ1(Σ) is bounded away from infinity.

Then, any choice of U will be regular.
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Simulations for LSS (κ > 3)

Recall Xi = Σ1/2Zi .

Zi generated with standardized i.i.d. t-dist (df=20)

kurtosis κ ≈ 3.4

decaying population spectrum is λj = j−1/2

population eigenvectors uniformly drawn from Haar measure

We tabulate the std. dev., 95th percentile, and 99th percentile of p(T − E[T ]).

f (x) = x f (x) = log(x)

(n,p) std. dev. 95th 99th std. dev. 95th 99th

(500,200)
0.16
0.17 (0.01)

0.27
0.28 (0.03)

0.36
0.39 (0.06)

1.07
1.08 (0.08)

1.82
1.76 (0.20)

2.41
2.51 (0.35)

(500,400)
0.18
0.18 (0.02)

0.29
0.30 (0.04)

0.41
0.42 (0.06)

4.41
4.27 (0.33)

7.03
6.72 (0.70)

9.77
9.29 (1.18)

(500,600)
0.17
0.18 (0.02)

0.29
0.30 (0.04)

0.40
0.43 (0.07)

- - -
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Simulations for LSS (κ < 3)

Recall Xi = Σ1/2Zi .

Zi generated with standardized i.i.d. Beta(6,6)

kurtosis κ = 2.6

decaying population spectrum is λj = j−1/2

population eigenvectors uniformly drawn from Haar measure

f (x) = x f (x) = log(x)

(n,p) std. dev. 95th 99th std. dev. 95th 99th

(500,200)
0.14
0.14 (0.01)

0.23
0.23 (0.03)

0.33
0.32 (0.05)

0.93
0.93 (0.08)

1.51
1.52 (0.17)

1.92
2.15 (0.31)

(500,400)
0.15
0.14 (0.01)

0.25
0.24 (0.03)

0.34
0.34 (0.05)

1.65
1.70 (0.13)

2.64
2.81 (0.31)

3.64
3.97 (0.56)

(500,600)
0.16
0.15 (0.01)

0.26
0.25 (0.03)

0.34
0.35 (0.05)

- - -
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What about other spectral statistics?

In principle, the proposed method can be applied to any spectral statistic.

Below, we present some simulation results for some non-linear statistics:

Tmax = λ1(Σ̂).

Tgap = λ1(Σ̂)− λ2(Σ̂)
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Simulations for non-linear statistics (κ < 3)

Recall Xi = Σ1/2Zi .

Zi generated with standardized i.i.d. Beta(6,6)

kurtosis κ = 2.6

decaying population spectrum is λj = j−1/2

population eigenvectors uniformly drawn from Haar measure

Tmax − E[Tmax] Tgap − E[Tgap]

(n,p) std. dev. 95th 99th std. dev. 95th 99th

(500,200)
0.06
0.06 (0.01)

0.11
0.09 (0.01)

0.15
0.13 (0.02)

0.08
0.07 (0.01)

0.13
0.11 (0.01)

0.17
0.16 (0.03)

(500,400)
0.06
0.06 (0.01)

0.10
0.09 (0.01)

0.15
0.13 (0.02)

0.08
0.07 (0.01)

0.13
0.11 (0.01)

0.18
0.16 (0.03)

(500,600)
0.06
0.06 (0.01)

0.11
0.09 (0.01)

0.14
0.13 (0.02)

0.07
0.07 (0.01)

0.13
0.11 (0.02)

0.17
0.16 (0.03)
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Simulations for non-linear statistics (κ > 3)
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Part I summary: Bootstrap for spectral statistics

LSS are a general class of statistics for which bootstrapping can succeed in
high dimensions.

This offers general-purpose way to approximate the laws of LSS without
relying on asymptotic formulas.

The method is akin to the parametric bootstrap — using the fact that
spectral statistics may depend on relatively few parameters of the full
data-generating distribution.

Numerical results are encouraging.

The method appears to extend to some non-linear spectral statistics — for
which asymptotic formulas are often unavailable.

Further work on non-linear statistics is underway . . .
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Part II: Bootstrapping the operator norm in high dimensions:

Error estimation for covariance matrices and sketching
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Motivations and background

Let X1, . . . ,Xn are centered i.i.d. observations in Rp with Σ = E[X1X
>
1 ],

and let Σ̂ denote the sample covariance matrix.

When p � n or p � n, there is a large literature on the problem of deriving
high-probabilty non-asymptotic bounds on the operator norm error

T =
√
n‖Σ̂− Σ‖op.

However, such bounds are typically only given up to unspecified constants.

In order to solve practical inference problems, such as constructing
numerical error bounds for Σ̂, or confidence regions for Σ, we need to
approximate the distribution of T .

The recent work of Han, Xu, and Zhou (2018) has explored bootstrap
approximations for sup‖u‖2≤1,‖u‖0≤s

√
n
∣∣u>(Σ̂− Σ

)
u
∣∣ when s � n, but

beyond this, not much is known about bootstrapping T in high
dimensions.
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Further motivations (RandNLA and sketching)

Randomized numerical linear algebra (RandNLA) or “matrix sketching” uses
randomization to accelerate numerical linear algebra on huge matrices.

For instance, if A is a very tall (deterministic) matrix, one may try to do
computations with a shorter “sketch” Ã = SA, where S is a random short matrix
satisfying E[S>S ] = I .

A> A (SA)> SA Ã> Ã

In practice, it is necessary to estimate the algorithmic error

‖A>S>SA− A>A‖op.

However, most theoretical work has focused on bounds that hold up to constants,
and only a handful of papers have addressed error estimation in this context:

(e.g. Liberty et al., (2007), Woolfe et al., (2008), Halko, Martinsson and Tropp (2011),
Lopes, Wang and Mahoney, (2017) (2018)).
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computations with a shorter “sketch” Ã = SA, where S is a random short matrix
satisfying E[S>S ] = I .

A> A (SA)> SA Ã> Ã
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A model with spectrum decay

Suppose X ∈ Rn×p is a data matrix with rows generated as

Xi = Σ1/2Zi

where the vectors Z1, . . . ,Zn ∈ Rp are i.i.d. and have i.i.d. entries with
E[Z11] = 0, E[Z 2

11] = 1, E[Z 4
11] > 1, and ‖Z11‖ψ2 ≤ c0 for some constant

c0 > 0 not depending on n.

There are constants β > 1/2 and c1, c2 > 0, not depending on n, such
that for each j ∈ {1, . . . , p},

c1 j
−2β ≤ λj(Σ) ≤ c2 j

−2β.
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Main result (rate of bootstrap approximation)

Recall that we aim to approximate the law of T =
√
n‖Σ̂− Σ‖op.

Let (X ∗1 , . . . ,X
∗
n ) be drawn with replacement from (X1, . . . ,Xn), and let

Σ̂∗ =
1

n

n∑
i=1

X ∗i (X ∗i )>.

Also, define the bootstrapped statistic T ∗ =
√
n‖Σ̂∗ − Σ̂‖op.

Theorem 2 (LEM 2019)

Let dK denote the Kolmogorov metric. Then, under the stated model, there is a
constant c > 0 not depending on n such that the event

dK

(
L(T ) , L(T ∗|X )

)
≤ c n−

β−1/2
6β+4 log(n)c

occurs with probability at least 1− c
n .
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Connections to other works

In recent years, there have been several influential works by Chernozhukov,
Chetverikov, and Kato (CCK) (2013), (2014), (2017) on bootstrapping maxima
of empirical processes

sup
f∈F

Gn(f )

where Gn(f ) = 1√
n

∑n
i=1 f (Zi )− E[f (Zi )].

The statistic T =
√
n‖Σ̂− Σ‖op can be represented in this form by taking

f (Zi ) = ±〈v ,Zi 〉2,

with v = Σ1/2u for some unit vector u (so F corresponds to a signed ellipsoid).

However, the results of CCK are not directly applicable to T , because such results
typically involve a “minimum variance condition”, such as

inf
f∈F

var(Gn(f )) ≥ c

for some c > 0 not depending on n, which fails for the ellipsoidal index set.
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Why β − 1/2?

Recall the rate of bootstrap approximation

n−
β−1/2
6β+4 log(n)c .

The role of β − 1/2 can be understood in terms of the error that comes from
discretizing F ,

∆n(ε) := sup
dist(f ,f̃ )≤ε

|Gn(f )−Gn(f̃ )|.

In order for discrete approximation to work, we should have E[∆n(ε)]→ 0 as ε→ 0.

This imposes an implicit constraint on the complexity of F (i.e. the complexity Σ).

If we consider a simpler situation where Gn(f ) is replaced by a linear Gaussian process
indexed by the same F , say

G′n(f ) = 1√
n

∑n
i=1〈v , ζi 〉,

with ζ1, . . . , ζn i.i.d. N(0, I ), then it follows from classical results that the associated
discretization error satisfies the lower bound

E[∆′n(ε)] ≥ cε(β−1/2)/β .

Hence, the condition β − 1/2 > 0 is needed even in the linear Gaussian case.
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A new general-purpose error bound

To analyze the bootstrap, it was necessary to use dimension-free
high-probability upper bounds on ‖Σ̂− Σ‖op.

Existing dimension-free bounds generally require either ‖Xi‖2 ≤ c almost
surely, or ‖〈u,Xi 〉‖ψ2 � ‖〈u,Xi 〉‖L2 for all ‖u‖2 = 1.

(e.g. Rudelson and Vershynin, (2007), Oliveira, (2010), Hsu, Kakade and
Zhang, (2012), Koltchinskii and Lounici, (2017), Minsker, (2017))

However, the `2-boundedness condition is often restrictive, while the ψ2-L2

equivalence condition is not well-suited to the discrete distributions that
arise from resampling.

As a way to streamline our analysis of both (X1, . . . ,Xn) and the
bootstrap samples (X ∗1 , . . . ,X

∗
n ), it is of interest to develop a

dimension-free bound that can be applied in a more general-purpose way.
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A new general-purpose error bound

Proposition 1 (LEM 2019)

Let ξ1, . . . , ξn ∈ Rp be i.i.d. random vectors, and for any q ≥ 1, define the
quantity

r(q) = q

(
E[‖ξ1‖2q

2

]) 1
q∥∥E[ξ1ξ>1 ]

∥∥
op

. (4)

Then, there is an absolute constant c > 0, such that for any q ≥ 3 ∨ log(n), the
event ∥∥∥∥ 1

n

n∑
i=1

ξiξ
>
i − E[ξiξ

>
i ]

∥∥∥∥
op

≤ c ·
∥∥E[ξ1ξ

>
1 ]
∥∥

op
·
(√

r(q)
n ∨ r(q)

n

)
holds with probability at least 1− 1

n .

The proof extends an argument from Rudelson and Vershynin (2007) to the case of
unbounded ξ1, . . . , ξn. The essential step is based on the non-commutative Khinchine
inequality of Lust-Piquard (1986).
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Coverage probabilities (error bounds or confidence regions)

Simulation settings:

n ∈ {300, 500, 700} and p = 1,000

Repeated leading eigenvalues:

λ1(Σ) = · · · = λ5(Σ) = 1 and λj(Σ) = j−2β for j ∈ {6, . . . , p}

True eigenvectors were drawn from the Haar (uniform) distribution.

Entries Zij drawn from N(0, 1) or standardized t20.
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Simultaneous confidence intervals for true eigenvalues

It is of interest to construct confidence intervals I1, . . . , Ip that satisfy

P
( p⋂

j=1

{
λj(Σ) ∈ Ij

})
≥ 1− α. (*)

To do this, it is helpful to consider the (deterministic) Weyl inequality,

max
1≤j≤p

|λj(Σ̂)− λj(Σ)| ≤ ‖Σ̂− Σ‖op.

If q1−α denotes the (1− α)-quantile of T , then Weyl’s inequality implies that (*)

must hold for Ij := [λj(Σ̂)± q1−α/
√
n]. Hence, we may construct approximate

intervals by replacing q1−α with the bootstrap estimate q̂1−α.
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Application to randomized numerical linear algebra

Recall the schematic for randomized matrix multiplication:

A> A (SA)>SA Ã> Ã

where A ∈ Rd×p is deterministic with d ≥ p, and the sketching matrix
S ∈ Rn×d is random with n� d .

Also, the rows of S are (usually) generated to be i.i.d. with E[S>S ] = I .

To bootstrap the algorithmic error ‖Ã>Ã− A>A‖op, we may regard Ã as a
“data matrix” and sample its rows with replacement.

Note that the user generates the matrix S , which leaves no question about
model assumptions!

Speedup via extrapolation.
Therefore, if we view the sketching error quantile as a function of n, say
q1−α = q1−α(n), then we may expect the following approximate
relationship between a small “initial” sketch size n0, and a larger “final”
sketch size n1,

q1−α(n1) ≈
√

n0
n1

q1−α(n0). (5)

The significance of this approximation is that q1−α(n0) is computationally
much easier to estimate than q1−α(n1), since the former involves
bootstrapping a matrix of size n0 × p, rather than n1 × p.
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Computational cost of bootstrapping

Historically, the bootstrap has been labeled as computationally intensive.

Hence, it seems counterintuitive to apply it in the service of comptuation.

Key considerations.

In many large-scale computations, communication is the bottleneck,
and the user may only be able to access A once or twice.

Whereas the computation of Ã requires access to A, the bootstrap
computations do not.

Furthermore, the bootstrap computations only involve the small
matrix Ã.

Lastly, the bootstrap computations can be accelerated via
extrapolation.
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Lastly, the bootstrap computations can be accelerated via
extrapolation.

41 / 48



A simple and effective extrapolation rule

Recall that the sketched matrix Ã is of size n × p, and let q1−α = q1−α(n)
denote the 1− α quantile of the error ‖Ã>Ã− A>A‖op.

Since the error typically has fluctuations of order 1/
√
n, we may expect

the following relationship between a small “initial” sketch size n0, and a
larger “final” sketch size n1,

q1−α(n1) ≈
√

n0
n1

q1−α(n0). (6)

This leads to the extrapolation rule

q̂1−α(n1) :=
√

n0
n1
q̂1−α(n0) for any n1 ≥ n0.

Important: q̂1−α(n0) is much cheaper to compute than q̂1−α(n1).
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(a) Sketching with Gaussian random projections.
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(b) Sketching with uniform row sampling.

Figure: Bootstrap estimates for the 90% quantile of the error ‖Ã>Ã− A>A‖op,
where A is of size 10, 000× 1, 000. Initial sketch size is only 300.
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An example: Sea surface temperature data

temperature fluctuations

(a) ENSO region

temperature fluctuations

(b) exact ENSO mode

Figure: The rows of A ∈ R13,271×3,944 are 13,271 snapshots of the ENSO
region. (cf. NOAA SST dataset and Reynolds et al., 2002)

Panel (a): The ENSO region, marked with a rectangle.

Panel (b): The true ENSO mode, obtained by exact computation with the full
product A>A.
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temperature fluctuations

(a) approx. ENSO mode, n = 500

temperature fluctuations

(b) approx. ENSO mode, n = 3,000

Figure: The left and right panels show approximations to the ENSO mode based
on the approximate product Ã>Ã, obtained from Gaussian random projections
with sketch sizes n = 500 and n = 3,000. A comparison with the exact ENSO
mode shows that an insufficient sketch size can lead to a substantial distortion.
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Figure: Panel (a): decaying eigenvalues of A>A.

Panel (b): The extrapolated and non-extrapolated bootstrap methods accurately
estimate the 90% quantile of the sketching error ‖Ã>Ã− A>A‖op over a wide
range of sketch sizes.

In particular, the extrapolation rule gives accurate results at a final sketch size
n1 = 5,000 that is 10 times larger than the initial sketch size n0 = 500.
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Part II summary: Bootstrap for operator norm error

For estimating the error of Σ̂ or constructing confidence regions for
Σ, we need distributional approximation for T =

√
n‖Σ̂− Σ‖op.

Under the spectrum decay condition λj(Σ) � j−2β with β > 1/2, the
ordinary non-parametric bootstrap works, with the rate of
approximation being dimension-free.

The bootstrap approximation guarantee for T is robust against the
effect of repeated (or closely spaced) population eigenvalues.

The bootstrap has a largely untapped potential for estimating the
errors of randomized algorithms. (This is a relatively new area with
many opportunities at the intersection of computer science,
high-dimensional statistics, and random matrix theory.)
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