
Introduction Finite Samples Random Matrix Theory Kernel Estimation Monte Carlo Application Conclusion

Analytical Nonlinear Shrinkage
of Large-Dimensional Covariance Matrices

Olivier Ledoit1 and Michael Wolf1

1Department of Economics
University of Zurich

RMCDA Shanghai, December 11th, 2019

1 / 53



Introduction Finite Samples Random Matrix Theory Kernel Estimation Monte Carlo Application Conclusion

Outline

1 Introduction

2 Finite Samples

3 Random Matrix Theory

4 Kernel Estimation

5 Monte Carlo

6 Application

7 Conclusion

2 / 53



Introduction Finite Samples Random Matrix Theory Kernel Estimation Monte Carlo Application Conclusion

Outline

1 Introduction

2 Finite Samples

3 Random Matrix Theory

4 Kernel Estimation

5 Monte Carlo

6 Application

7 Conclusion

3 / 53



Introduction Finite Samples Random Matrix Theory Kernel Estimation Monte Carlo Application Conclusion

What is the Point of the Paper?

4 / 53



Introduction Finite Samples Random Matrix Theory Kernel Estimation Monte Carlo Application Conclusion

What is the Point of the Paper?

To solve with random matrix theory a very general statistical problem

4 / 53



Introduction Finite Samples Random Matrix Theory Kernel Estimation Monte Carlo Application Conclusion

What is the Point of the Paper?

To solve with random matrix theory a very general statistical problem

How to Estimate the CovarianceMatrix

“the second most important object in all of Statistics”

4 / 53



Introduction Finite Samples Random Matrix Theory Kernel Estimation Monte Carlo Application Conclusion

What is the Point of the Paper?

To solve with random matrix theory a very general statistical problem

How to Estimate the CovarianceMatrix

“the second most important object in all of Statistics”

How do we do it?

4 / 53



Introduction Finite Samples Random Matrix Theory Kernel Estimation Monte Carlo Application Conclusion

What is the Point of the Paper?

To solve with random matrix theory a very general statistical problem

How to Estimate the CovarianceMatrix

“the second most important object in all of Statistics”

How do we do it?

By combining Olivier Ledoit and Sandrine Péché (2011) with
Bing-Yi Jing, Guangming Pan, Qi-Man Shao and Wang Zhou (2010).
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Many Applications besides Finance

cancer research (Pyeon et al., 2007)

chemistry (Guo et al., 2012)

civil engineering (Michaelides et al., 2011)

climatology (Ribes et al., 2009)

electrical engineering (Wei et al., 2011)

genetics (Lin et al., 2012)

geology (Elsheikh et al., 2013)

neuroscience (Fritsch et al., 2012)

psychology (Markon, 2010)

speech recognition (Bell and King, 2009)

etc...
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Overall Plan of the Talk

1 Set up required background in Multivariate Statistics

2 Review useful results from Random Matrix Theory

3 Bring both threads together by estimating a Hilbert transform

4 Report Monte Carlo simulations

5 Run empirical experiment on real-world financial data
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The Sample Covariance Matrix

Yn: matrix of n iid observations on p zero-mean variables

Sample covariance matrix Sn
..= Y′nYn/n

Population covariance matrix Σn
..= E[Sn]

Problem 1: Sn is non-invertible when p > n

Problem 2: Sn is ill-conditioned when n is not much bigger than p

Problem 3: Sn is inadmissible when p ≥ 3 (James and Stein, 1961)

[Inadmissible means that there exists a more accurate estimator.]
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Rotation equivariance means Σ̂n(YnR) = R′Σ̂n(Yn)R

No a priori information on orientation of population eigenvectors

Stein (1986) shows it is the same as keeping the sample eigenvectors
and modifying the sample eigenvalues:

λn,1, . . . , λn,p: sample eigenvalues; un,1, . . . ,un,p: sample eigenvectors

Sn =

p∑

i=1

λn,i · un,iu
′
n,i −→ Σ̂n =

p∑

i=1

δ̂n,i · un,iu
′
n,i
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(2) This is not the linear shrinkage of Ledoit and Wolf (2004, JMVA):

they assume the modified eigenvalues are linear functions of the

observed ones: ∀i = 1, . . . , p δ̂n,i = an + bnλn,i

they have only 2 degrees of freedom, whereas our class has p≫ 2
degrees of freedom

linear shrinkage is a good first-order approximation if optimal
nonlinear shrinkage happens to be ‘almost’ linear, but in the
general case it can be further improved
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We use the Minimum-Variance Loss championed by
Rob Engle, Olivier Ledoit and Michael Wolf (2019)
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n,i

is the true variance of the linear combination
of original variables weighted by eigenvector un,i

By contrast, λn,i is the sample variance of the linear combination
of original variables weighted by eigenvector un,i: overfitting!

FSOPT is the unattainable ‘Gold Standard’
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’s from the second part

Average over many different ways to split the sample

Gets around the overfitting problem

Problems:

Requires brute-force spectral decomposition of many matrices

Easy to code but slow to execute

Cannot go much beyond dimension p = 1000 computationally

To get an analytical solution: need Random Matrix Theory
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This is not the spiked model of Johnstone (2001, AoS), which assumes
that, apart from a finite number r of ‘spikes’, the p − r population
eigenvalues in the ‘bulk’ are equal to one another. By contrast, we can
handle the general case with any shape(s) of bulk(s).

Theorem 1 (Marčenko and Pastur (1967))

There exists a unique F ..= Fc,H such that the sample spectral c.d.f.
Fn(x) ..= p−1

∑p

i=1
1{x≥λn,i} converges to F(x).
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∀x ∈ [a−, a+] fc,H(x) ..=

√
(a+ − x)(x − a−)

2πcx
where a± ..=

(
1 ±
√

c
)2

16 / 53



Introduction Finite Samples Random Matrix Theory Kernel Estimation Monte Carlo Application Conclusion

Σn = Identity Matrix: Marčenko-Pastur Law
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Ledoit-Péché show that under large-dimensional asymptotics:

u′n,iΣnun,i ≈
λn,i

[
πcλn,if (λn,i)

]2
+

[
1 − c − πcλn,iHf (λn,i)

]2

where f ..= fc,H is the limiting spectral density

This is an oracle formula because f andHf are unknown

Results in local attraction: any sample eigenvalue moves toward
the mass center closest to it

Different from Ledoit and Wolf (2004) linear shrinkage, where all
eigenvalues move to the same global center of mass

Need to shrink within-clusters, not so much between-clusters
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Step 1: given observed Fn(x) ..= p−1
∑p

i=1
1{x≥λn,i}, find Ĥn that

provides the best match

Step 2: Given c and Ĥn, compute Stieltjes transform of F
c,Ĥn

Problem: Step 1 solves numerically a high-dimensional
constrained nonlinear minimization problem −→ slow, and hard
to scale above dimension p = 1, 000

Also: population spectrum is a nuisance parameter with no direct
bearing on the outcome

It would be nice to have a direct estimator for f andHf that depends
only on sample eigenvalues, with fast analytical formula.
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Choice of Kernel

Kernel estimation of limiting sample spectral density was pioneered
by Bing-Yi Jing, Guangming Pan, Qi-Man Shao and Wang Zhou
(2010, AoS).
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Choice of Kernel

Kernel estimation of limiting sample spectral density was pioneered
by Bing-Yi Jing, Guangming Pan, Qi-Man Shao and Wang Zhou
(2010, AoS).

A kernel k(·) is assumed to satisfy the following properties:

k is a continuous, symmetric density with finite support,
mean zero, and variance one

Its Hilbert transformHk exists and is continuous

Both the kernel k and its Hilbert transformHk are functions
of bounded variation

We use the well-known Epanechnikov kernel.

We also prove that it satisfies all the above assumptions.
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Choice of Bandwidth

We propose to use a variable bandwidth that is proportional
to the magnitude of a given sample eigenvalue.

The bandwidth applied to λn,i is hn,i
..= λn,ihn, where hn → 0.

Jing et al. (2010) used hn
..= n−1/3, so we keep the same exponent.

Note:

They actually use a uniform bandwidth hn,i ≡ n−1/3

This results in worse finite-sample performance

Also fails to respect the scale-equivariant nature of the problem
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Kernel Estimators & Feasible Shrinkage Formula

Kernel estimators of f andHf

∀x ∈ R f̃n(x) ..=
1

p

p∑

i=1

1

hn,i
k

(
x − λn,i

hn,i

)

∀x ∈ R H
f̃n

(x) ..=
1

p

p∑

i=1

1

hn,i
Hk

(
x − λn,i

hn,i

)
=

1

π
PV

∫
f̃n(t)

x − t
dt

Feasible analytical nonlinear shrinkage estimator of Σn

∀i = 1, . . . , p d̃n,i
..=

λn,i
[
π

p

n
λn,ĩfn(λn,i)

]2

+

[
1 − p

n
− πp

n
λn,iHf̃n

(λn,i)
]2

S̃n
..=

p∑

i=1

d̃n,i · un,iu
′
n,i
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The 2010 paper by Jing, Pan, Shao and Zhou was entitled
“Nonparametric estimate of spectral density functions of sample
covariance matrices: A first step”.

At the narrowest level, we do “A second step” by:

moving from fixed to proportional bandwidth,

generalizing their results to obtain a nonparametric estimate of
the Hilbert transform of the spectral density of the sample
covariance matrix.

But our main contribution is to harness the technique to make
headway on the general problem of estimating the covariance matrix.

The hard work of connecting the pipes (mathematically speaking)
happens essentially ‘behind the scene’, and it owes much debt to
foundational results first laid out in Ledoit and Wolf (2012, AoS).
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Executive Summary

Performance of analytical nonlinear shrinkage:

Much better than linear shrinkage

Basically as good as QuEST

Somewhat better than NERCOME

Speed of analytical nonlinear shrinkage:

Basically as fast as linear shrinkage

Much faster than QuEST

Much faster than NERCOME

=⇒ Get the best of both worlds!
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Main Performance Measure

Percentage Relative Improvement in Average Loss (PRIAL):

PRIALMV
n

(
Σ̂n

)
..=
E

[
LMV

n

(
Sn,Σn)

]
− E

[
LMV

n

(
Σ̂n,Σn)

]

E

[
LMV

n

(
Sn,Σn)

]
− E

[
LMV

n

(
S∗n,Σn)

] × 100%

By construction:

The sample covariance matrix Sn has PRIALMV
n

(
Sn

)
= 0%

The FSOPT ‘Gold Standard’ has PRIALMV
n

(
S∗n

)
= 100%

Note:

Negative PRIAL values are possible
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Baseline Scenario

We use a scenario introduced by Bai and Silverstein (1998, AoP):

Dimension p = 200

Sample size n = 600

Concentration ratio ĉn = 1/3

20% of the τn,i are equal to 1, 40% equal to 3, and 40% equal to 10

Condition number θ = 10

Variates are normally distributed

Each feature will be varied in subsequent scenarios.
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Results for Baseline Scenario

Estimator Sample Linear Analytical QuEST NERCOME FSOPT

∅ Loss 2.71 2.10 1.52 1.50 1.58 1.48
PRIAL 0% 50% 97% 98% 92% 100%

Time (ms) 1 3 4 2, 233 2, 990 3

Note:

Computational times in milliseconds come from a 64-bit,
quad-core 4.00GHz Windows PC running Matlab R2016a
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Large-Dimensional Asymptotics

Let p and n go to infinity together with p/n ≡ 1/3:
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Speed

Let p and n go to infinity together with p/n ≡ 1/3:
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Ultra-High Dimension

Repeat baseline scenario but multiply both p and n by 50:

p = 10, 000

n = 30, 000

QuEST and NERCOME are no longer computationally feasible.

Estimator Sample Linear Analytical FSOPT

∅ Loss 2.679 2.086 1.488 1.487
PRIAL 0% 49.74% 99.90% 100%

Time (s) 21 43 113 108
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Concentration Ratio

Vary p/n from 0.1 to 0.9 while keeping p × n = 120, 000:
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Condition Number

Vary θ from 3 to 30, by linearly squeezing/stretching the τn,i:
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Non-Normality

Vary the distribution of the variates:

Distribution Linear Analytical QuEST NERCOME

Normal 50% 97% 98% 92%
Bernoulli 51% 97% 98% 92%
Laplace 50% 97% 98% 92%

‘Student’ t5 49% 97% 98% 92%
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Shape of Distribution of Population Eigenvalues

Use a shifted and stretched Beta distribution with support [1,10]:

Beta Parameters Linear Analytical QuEST NERCOME

(1, 1) 83% 98% 99% 96%
(1, 2) 95% 99% 99% 98%
(2, 1) 94% 99% 99% 99%

(1.5, 1.5) 92% 99% 99% 98%
(0.5, 0.5) 50% 98% 98% 94%

(5, 5) 98% 100% 100% 99%
(5, 2) 97% 100% 100% 98%
(2, 5) 99% 99% 99% 99%
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Fixed-Dimensional Asymptotics

Let n grow from 250 to 20,000 while keeping p ≡ 200:
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Arrow Model

Let τn,p
..= 1 + 0.5(p − 1) and remaining bulk from s&s Beta(5,2):
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Robustness Check: Choice of Kernel

Consider alternative choices of the kernel:
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Robustness Check: Choice of Kernel

Just as good:

Semi-circle kernel

Triangular kernel

No good:

Gaussian kernel (extremely slow)

Quartic kernel (numerical issues)
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Robustness Check: Multiplier and Exponent

Consider a base-rate bandwidth of the form hn
..= Kn−α with

K ∈ {0.5, 1, 2}
α ∈ {0.2, 0.25, 0.3, 1/3, 0.35}

Finding:

Our initial choices K = 1 and α = 1/3 cannot be bettered

Additional finding:

Using a uniform bandwidth hn,i ≡ λ̄nhn instead of our
variable bandwidth hn,i

..= λn,ihn reduces performance
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Data & Portfolio Rules

Stocks:

Download daily return data from CRSP

Period: 01/01/1973–12/31/2017

Updating:

21 consecutive trading days constitute one ‘month’

Update portfolios on ‘monthly’ basis

Out-of-sample period:

Start out-of-sample investing on 01/16/1978

This results in 10,080 daily returns (over 480 ‘months’)
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Data & Portfolio Rules

Portfolio sizes:

We consider p ∈ {100, 500, 1000}

Portfolio constituents:

Select new constituents at the beginning of each month

If there are pairs of highly correlated stocks (r > 0.95),
kick out the stock with lower market capitalization

Find the p largest remaining stocks that have

(i) a nearly complete 1260-day return history
(ii) a complete 21-day return future

Estimation:

Use the previous n = 1260 days to estimate the covariance matrix
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Global Minimum Variance Portfolio

Problem Formulation:

min
w

w′Σw

subject to w′1 = 1

(where 1 is a conformable vector of ones)

Analytical Solution:

w∗ =
Σ−11

1′Σ−11

Feasible Solution:

ŵ ..=
Σ̂−11

1′Σ̂−11
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Performance Measures

All measures are based on the 10,080 out-of-sample returns
and are annualized for convenience.

Performance measures:

AV: Average

SD: Standard deviation (of main interest)

IR: Information ratio, defined as AV/SD

Assessing statistical significance:

We test for outperformance of NonLin over Spiked in terms of SD

Test is based on Ledoit and Wolf (2011, WM)
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Performance Measures

p = 100 p = 500 p = 1000

AV SD IR AV SD IR AV SD IR
Identity 12.82 17.40 0.74 13.86 16.83 0.82 14.36 16.85 0.85
Sample 11.94 11.88 1.01 11.89 9.45 1.26 11.83 11.44 1.03
Linear 12.01 11.81 1.02 12.02 9.06 1.33 12.26 8.27 1.48
Spiked 11.92 11.88 1.00 12.27 8.86 1.38 12.51 7.58 1.65
NonLin 11.94 11.74∗∗∗ 1.02 11.91 8.63∗∗∗ 1.38 12.28 7.45∗∗∗ 1.65

Note: In the columns labeled “SD”, the best numbers are in blue.
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Conclusion

We view FSOPT (replacing sample eigenvalues with u′
n,i
Σnun,i) as the

‘Gold Standard’ for covariance matrix estimation because it is the
most general solution:

the orientation of the population eigenvectors can be anything,

the distribution of the population eigenvalues can be anything,

the shape of the shrinkage function can be anything.

Our estimator is the first analytical formula that attains FSOPT
performance under large-dimensional asymptotics. The advantages
of being analytical are:

it is easily understandable and teachable,

it is fast and scalable up to 10, 000 variables,

it can be programmed inside a further numerical scheme.

There are many Big Data M.Sc. programs in their infancy, and the first
one to offer a course entitled “Shrinkage for Big Data” will gain an
edge over the competition.
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