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Model from matrix normal distribution

Y = (ylj)al: ]-525”' 7p7] = 1)2)"'n°
e Matrix normal distribution (De Waal, 1985)

E Vec(Y') = 0pp,, Cov(Vec(Y)) = A® B.

A : spatial; B : temporal.

(]

Spatial-temporal process: Climate, environmental sciences,
medical sciences, brain-imaing.

Y = AY2XBY2 X € RP*" are of i.i.d. entries.

B = I — sample covariance matrix .
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Basic assumptions

o X = (z;;) € RP*™ with i.i.d. entries and
Ez;; =0, Exfj =
@ For some large integer ¢ > 0 such that for 1 < k <¢
Elzij|* < Cpn=*/2.
@ For some constant 0 < 7 < 1, we have
T<d:=p/n< L

o A c RPP and B € R™™" are some p.d.f. deterministic
matrices satisfying regularity assumptions.

Spec(A) = {a1,a2,--- ,ap}, Spec(B) = {b1, b2, -+ ,by}.
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Some notations

o O, = AV2XBXT A2 Q, = B1/2XT AXB!/2
Gi(z) = (Q1—2)7", Ga(2) = (Qa—2)7".
@ p: ESD of Q. Stieltjes transform of p
m(z) =p " trGi(z).

p
z) :n_lzai(gl( iy, ma(z 125 (Ga(z
=1

o Self-consistent equations: (m1., ma.) € (CQ+

mie(s) = d | ()

mar(s) = d | ()
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Macroscopic picture

e Define m.(z)

1
me(z) = d/ 0T xmgc(z))ﬂA(dx)'

Theorem (Zhang, 2007)

For any z € C., there exists a unique solution (m., ma.) € (Ci to
the systems of self-consistent equations. The function m. is the
Stieltjes transform of a probability measure . supported on R .
Moreover, 1. has a continuous derivative p.(x) on (0, c0).

o Edge behavior of p,

x
flz,m) = _m+/—z+xdf%7r,4(dt)ﬂ3(dx)'

Xiucai Ding Landscape of separable covariance matrices



Macroscopic picture: D. and Yang, 2019

@ The densities p. and p1 2. all have the same support on
(0,00), which is a union of intervals:

q
supp pN(0,00) = supp p1,2.M(0,00) = | [z, aap—1]N(0, 00),
k=1

where ¢ € N depends only on 74 p.

o (z,m) = (g, mac(ag)) are the real solutions to the equations

f(x,m) =0, and %(x,m) =0.

Moreover, we have mic(ar) € (—=b; 1, 0) and
mac(or) € (—ayt,0).
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What do we expect?

@ Setup: d =0.5 and n =400
ma,mp = 0.51; +0.514

e Normalization: (El Karoui , AOP 2007)

0.35

I numerical results

oal =t _
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Regularity assumption: D. and Yang, 2019

@ )\, := ay. To ensure TW, we expect: there exist constants
B1,2 > 0 such that when Im z > 0,

pr2c(Ar — ) = Braxt? + O(z), x 10,

M12e(2) = mioe(Ar)+mar2(z=M\) 240 (2= N |), 2 = Ar.
e Taylor expansion: 0. f(\.,m;), 02 f(\.,m;) = O(1).

@ Regularity assumption

1+ mic(A)br > 7, 1+ mac(A)ar > 7.
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Separable sample covariance matrices without spikes

Theorem (D. and Yang, 2019+)

For the separable sample covariance matrices Q1, there exists some
constant ~y, such that

n?3y,.(A1(Q1) — A\r) = TW.

@ Joint distributions: for some fixed constant K > 0,
(0B (A=Ar), - 2B Ak =Ar)) = (n*P(AFOF-2), - n?B(AFOP-2))

@ The convergent limits and rates are first established in (Yang,
EJP 2019). More generally, we have the rigidity results

IXi(Q1) — yi| < min{i,n Ap—i+1}"13n72/3,
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Spiked separable sample covariance matrices, D and Yang 2019

To add spikes, we assume that there exist some fixed intergers
r,s € N and constants df, 1 <i <r, and dz, 1 < pu <s, such that

AV _ Vaia(va)'l" E _ Vbib(vb)'r’
and N B B B
¥ = diag(ay, . .., dp), X’ = diag(by,...,bn).

Here

a’i: =

_ {ai(1+d?), 1<i<r - {bu(1+d2), 1<p<s

. ) . .
a;, otherwise b otherwise
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Spike separable sample covariance matrices: outliers

@ We assume the followings hold for all 1 <4 < r and
I<p<s.

a; > —myr(\)  or by >—mit(\).
e We define the integers 0 < r* < r and 0 < st < s such that

@i > —myt(\) +n 2 ifandonly if 1<i<rT,

b“Z—mlc(/\)—i—n 1/3 ifandonly if 1< pu<st.
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Spike separable sample covariance matrices: outliers

@ Deterministic locations
91(61) = g2¢ (—ai_l) or 92(5“) = Jlc (—?):1) y

where g1., g2. are respectively the inverse functions of

mic : (Ar,00) = (M1c(Ar),0), mac = (Ar, 00) = (mac(Ar), 0).
e We define the labelling functions o : {1,--- ,p} — N and

B:{1,---,n} — N as follows. For any 1 <14 <r, we assign

to it a label a(i) € {1,--- ,r + s} if 61(a;) is the a(i)-th

largest element in {01(a;)}i_; U {02(bu)};—1- We also assign

toany 1 < p <salabel (u) € {1,---,r+ s} in a similar

way. Moreover, we define «(i) =i+ s if i > r and

Bp) =p+rif p>s.
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Spike separable sample covariance matrices: outliers

@ Index notations
O ={a®):1<i<r}U{Bu) :1<pu<s}
O i={a@i): 1<i<rT}u{B(u):1<pu<st}

@ Fluctuation level

M) = (@ ma ()7 Balby) = (B +mitn)
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Outlier and extremal non-outlier eigenvalues

Theorem (D. and Yang, 2019)

Aa(i) — 01(a;)

<n 20 (@), 1<i<rt,

‘Xﬂ(ﬂ) - 92(5#)‘ = n_l/zAQ(ZM), 1<p<st.

Furthermore, for any fixed w > r + s, we have

X — M| <03 for i¢ OF and i < w.

v

@ When A; changes from n=/3 to O(1), we expect a transition
for TW to Gaussian.

e (Bao-D.-Wang, 2018), (Bao-D.-Wang-Wang, 2019).

@ In general, variance depends on 4th cumulants (both third
and fourth moments).
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Eigenvalue sticking

Theorem (D. and Yang, 2019)

b

o = min {mln ‘EI:Z + mz_cl ()\r,«)| ,HEH ‘gﬂ I ml_cl()\T’)
(2

Fix any sufficiently small constant T > 0. We have that for
1 <1< 7,

>\i+r+s - )\z

@ Tracy-Widom.
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Qutlier singular vectors

For1<i<rt, 1<j<pandl<v<n, we define
Syt = 185 = @ls 0 sy = [bw +mid (01(a@)] .
Similarly, for 1 < u < s, 1<j <pand1<wv<n, we define

~ _ o b L o~ ~
Oty = 185+ mag (0200))] 0 sy = lbw — bul-

Denote
Oafi) = (mink:am)s«éa(i) 5Z(i),a(k)> A <minuiﬁ(u)¢a(i) 52(1»),6(”))

Xiucai Ding Landscape of separable covariance matrices



Qutlier singular vectors

Theorem (D. and Yang, 2019)

g2l lai) ) L -
@i g2e(—(@)=1) " 7\ n12@@ + (my (A))/2 T nd '

2
a(i)

@ Non-overlapping condition

@i +ma. () >n”?

N (R +m2—cl(>\r))—l/2n—1/2.
Theorem (D. and Yang, 2019)

If a(i) ¢ OF, we have

a & 2 1
Vi, 8a(i < ~ — °
0 e o el 0P+ 77)

@ Right singular vectors. General components.
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General picture
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Some statistical remarks: which model?

3¢ = diag(5,1,---,1), X’ =diag(5,1,---,1), (Casel)
Y= diag(3,2,1,---,1), ¥ = diag(1,1,---,1).  (Case Il)

50-
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o

w
o

Case |
* Case ll

[N)
o

Eigenvalue

=
o

0 50 100 150
Index
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Some statistical remarks: which model?
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Some statistical remarks: adaptive estimation

n —1
ai::— l Z % N 1§1§T+8
A (Q2) = Aagi)

n
v=r+s+1

1 & 1 B
/I)\“Z:— - = = 5 1§/LST’+S
(n k:;sﬂ A(Q1) — )‘B(u))

@ Suppose B = I, + M, where M,, is a matrix of rank [,,.
Then we have that for 1 < i <,

@i = @i + O (Lyn~1?).

Similarly, if A is an I,-rank perturbation of the identity
matrix, then for 1 < p <'s,

by = by + O<(lun~"?).
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Anisotropic local laws: (Yang, 2019) and (D. and Yang,

2019)

e (p+mn) x (p+n) self-adjoint block matrix (linear function of
X):

0 AY2X BY/?
H=H(X,z):= z1/2<31/2X*A1/2 0 ) z € Cy.

G=G(X,2):=(H(X,z)—2)"".

@ Schur complement formula

Q) — Gi 212Gy Gi 2712y G,
() = 2712y *G, Go N\ 26y Go

where Y := AY2X B1/2,
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Anisotropic local laws: (Yang, 2019) and (D. and Yang,

2019)

@ Spectral domains
S(c,2) ={z=E+in: N\ —q1 < E< @A, 0<n <1}
So(s1,52,€) == S(s1,02) N {z=E+in:n>n"17},
2 € Sulen©) = {E+in: A4 < B <orme01]).

@ Convergent limits and control parameters

(I 0 ) e Im mac(2) 1
H(z).( 0 H2>,\I/(). E— —l—nn.

I = =27 (1 mae(2)A) 7", T = =27 (14mie(2) B) 7.
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Anisotropic local laws: (Yang, 2019) and (D. and Yang,

2019)

e For z € Sy(s1,2,€), we have

{u, G(X, 2)v) — (0, II(2)v)| < ¥(2).

[m(2) —me(z) | +m (2) = mac(z) |+ ma (2) —mac(2)] < ()~

o For z € Sput(s2,€),k = |Rez — A\

(0, G(X, 2)v) — (u,TI(2)v)| < WZ;(Z) =n" (5 4n) M,




Technical proofs—Universality

@ Three ways to to prove universality (Erdos-Yau)

@ Comparison method (Erdos-Yau-Yin, Adv, 2010),
(Bao-Pan-Zhou, AOS 2015; D.-Yang, 2018, AOAP)

@ Continuous interpolation (Schelli-Lee, AOAP, 2016)
(Johnstone-Zhou, 2018, "discrete version”, swapping pair)

© Dyson Brownian motion (Erodos-Yau, JAMS;Landu-Yau, 2018)

@ Three-step-strategy using DM

@ Local laws for the random matrix ensemble H+rigidity of
eigenvalues: Proved

@ University of H; = H + /tG, G is GOE, t = o(1). t is the
time such that local eigenvalue statistics reach equilibrium.
Needs some basic discussion from free probability theory.

© A density argument comparing the eigenvalue statistics
between Step 2 and the random matrix ensemble.
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Technical proofs—Universality

Hy = ((W + S/ZX)T v +oﬁX> ’

W= (D 0),D*=diag(d, - ,dp).

@ Denote y; as the unique strong solution to the SDE

dB;
dpi = 22 | = P at,
a mm NZAk—Al+n

1i(0) : Wishart matrices.
@ For some ig, we denote \; as

z 10—1—1 Ak + )\l p
dps = 2/ 0t T NZM_AZ dt,

[
with A;(0) = Xi(y0Hy,)



Techincal proofs-Universality

Theorem (D. and Yang, 2019+)

For tg = n~1/3+€0 and t; = n=1/3%41 0 < € < €y/200,
|(Nigi=1(t1) — Ex(t1)) — (i — Eu(t1))| = n=2/379,

for any bounded 1.

o E)(-) is the edge. Clearly, E,(t) = (1+Vd)>V/1 +t.

e To find v and E,(), we need to study the macroscopic
structure of signal-plus-noise matrix.

o Free probability: rectangular free convolution and subordiation
function = square root behavior.
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Technical proofs—Outliers

- 1 0 Al/2x B1/2

H(X,z) =z (EWX*ZV? 0 , z€CLUR.
(Ve 0 _(DY(D*+ 1)t 0

U= ( 0 Vf) b= < 0 DY(DP + 1)—1> '

@ Master equation
det (D_l + zU*G(2)U) = 0.

@ Anisotropic local laws =

det(D™' +2U'(z)U) =0 =

L de+1 1 °
H( de 71—|—m20(x)a“)H

d,+1 1 o
P Y e b, 14+ mic(x)d,
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Outlier eigenvectors

(vE v = — L 74 (ve, G(2)v9)dz,
926(F)

1 * ~1/2
DI+ 0G0V G(Z)U} A

D= ((1 o (1 +%b>-1) '

U*G(2)U = D'/? {U*G(z)U —2U*G(2)U

where
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