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Two Sample Testing and Signal Detection

I X1, . . . ,Xn1

i.i.d.∼ F1(µ1,Σ1) and Y1, . . . ,Yn2

i.i.d.∼ F2(µ2,Σ2)

I Xk = (Xk1, . . . , Xkp)
T and Yk = (Yk1, . . . , Ykp)

T are p-dimensional

I Means: µ1 = (µ11, . . . , µ1p)
T and µ2 = (µ21, . . . , µ2p)

T

I Covariances: Σ1 = (σij1)p×p and Σ2 = (σij2)p×p

Signals in the Mean

H0 : µ1 = µ2 vs. Ha : µ1 6= µ2

Signals in the Covariance

H0 : Σ1 = Σ2 vs. Ha : Σ1 6= Σ2
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Tests for Means: Hotelling’s T 2

T 2 = (X̄1 − X̄2)′
{
Sn(

1

n1
+

1

n2
)

}−1

(X̄1 − X̄2) where

Sn = (n1 + n2 − 2)−1
2∑
i=1

ni∑
j=1

(Xij − X̄i)(Xij − X̄i)′.

Under H0 : µ1 = µ2 and Gaussianity

n1 + n2 − p− 1

p(n1 + n2 − 2)
T 2 ∼ Fp,n1+n2−p−1.

Reject H0 at level α if

n1 + n2 − p− 1

p(n1 + n2 − 2)
T 2 > Fp,n1+n2−p−1(α).
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HD Tests for Means without Threshholding

I Bai and Saranadasa (BS) (1996) removed S−1
n from T 2

BS = (X̄1 − X̄2)′(X̄1 − X̄2)− n1 + n2

n1n2
trSn

Requires: (i) p
n
→ c ∈ [0,∞) and (ii) λmax = o

(√
tr(Σ2)

)
.

I Srivastava (2009): replaced Sn with the diagonal matrix of Sn in T 2

Requires: Gaussian data and p ∼ n.

I Chen and Qin (2010): proposed U -statistic formulation

allowing p� n, Σ1 6= Σ2.

4 / 60



Chen-Qin (2010, AoS) Test

Qn =

∑
i6=j X

T
1iX1j

n1(n1 − 1)
+

∑
i 6=j X

T
2iX2j

n2(n2 − 1)
− 2

∑n1
i=1

∑n2
j=1 X

T
1iX2j

n1n2

• A linear combination of one- and two-sample U-statistics.

E(Qn) = µT1 µ1 + µT2 µ2 − 2µT1 µ2 = ‖µ1 − µ2‖2.

• Main Assumption for Asymptotic Normality of Qn

tr(Σ4)

tr2(Σ2)
→ 0 as p→∞.

• Applicable for ANY p if the eigenvalues are bounded.

• Thus, allows p� n.
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Asymptotic Power of Chen-Qin Test

Φ

−zα +
nκ(1− κ)‖µ1 − µ2‖2√

2tr(Σ̃2)

 ,

where Σ̃ = κΣ1 + (1− κ)Σ2 and κ = limn1,n2→∞ n1/(n1 + n2).

I A VALID test under weak assumptions for wide range of dimensions.

I “VALID” means control of type I error.

I The power may be weak under high dimension due to inflated tr(Σ̃2).
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Thresholding Tests for Means

I One Sample Higher Criticism (HC) Test (Tukey, 1976).

I Donoho and Jin (2004) pioneered the theory under Np(µ, Ip).

I µ = (µ1, · · · , µp) and those non-zero µi =
√

2r log p

I Faint Signals if r ∈ (0, 1)

I Sβ = {k : µk 6= 0}, the signal set.

I |Sβ | = p1−β – the number of signals.

I Sparse Signals if β ∈ (0.5, 1).
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Higher Criticism (HC)

I X ∼ N(µ, Ip)

I Zi is the Z-statistic at the i-th dimension.

I pi = P (N(0, 1) > Zi) is the p-value for the i-th null.

I Sorted p-values: p(1) ≤ p(2) ≤ · · · ≤ p(p).

I The HC statistic:

HC∗n = max
0≤i≤α∗p

√
p(i/p− p(i))√
p(i)(1− p(i))

.
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Optimal Detection Boundary Under Np(µ, Ip)

I A phase diagram in (r, β)-plane r = %(β).

I If r > %(β), H0 and H1 are asymptotically separable;

If r < %(β), H0 and H1 are not separable.

I Donoho and Jin (2004) established the detection boundary for HC test for

Gaussian data

%∗(β) =

{
β − 1/2, 1/2 < β ≤ 3/4;

(1−
√

1− β)2, 3/4 < β < 1

Same as the optimal detection boundary by Ingster (1999) without knowing the

underlying signal strength r and sparsity β.
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(i) For any test of the hypothesis,

P(Type I Error) + P(Type II Error)→ 1 if r < ρ(β) as n, p→∞;

(ii) There exists a test (HC) such that

P(Type I Error) + P(Type II Error)→ 0 if r > ρ(β) as n, p→∞.
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Lγ-Thresholding for H0 : µ = 0

I Motivated by Donoho and Johnstone (1994) and Fan (1996).

I X̄i = 1
n

∑n
j=1 Xij

I The threshold statistics

Tγn(s) =

p∑
i=1

|nX̄i|γI{|
√
nX̄i| >

√
2s log(p)} for s ∈ (0, 1)

I γ = 0: the HC;

I γ = 1: the L1-thresholding (hard thresholding) by Donoho and Johnstone (1994);

I γ = 2: the L2-thresholding used in Zhong, Chen and Xu (2013).
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L2-Thresholding Tests

I One sample: Zhong, Chen and Xu (2013, AoS)

I Two sample: Chen, Li and Zhong (2019, AoS)

I Can also attain Ingster “optimal” detection boundary when the underlying

distributions is unknown and data are dependent (Σ 6= Ip).

I More powerful than the HC when (r, β) are above the boundary (ZCX).

I The detection boundary can be lowered by utilizing the dependence (CLZ)

by first transforming data Xij to ˆ̃Σ−1Xij then applying the L2-thresholding.

12 / 60



Two-Sample for Means: Signals and Sparsity

I δk = µ1k − µ2k – signal in the k-th dimension.

I Sβ = {k : δk 6= 0}, the signal set.

I |Sβ | = p1−β — the number of signals.

I Sparse if β ∈ (0.5, 1).
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Two-Sample for Means: L2 Test Statistic

I An unbiased estimator to the signal δ2
k: U-statistics

Tnk =
1

n1(n1 − 1)

n1∑
i6=j

X
(k)
1i X

(k)
1j +

1

n2(n2 − 1)

n2∑
i6=j

X
(k)
2i X

(k)
2j

−
2

n1n2

n1∑
i

n2∑
j

X
(k)
1i X

(k)
2j .

I Test statistic

T̃n = n
∑

Tnk.

I Chen and Qin (2010, AoS)
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Two-Sample for Means: L2 vs L2-Thresholding Statistics

I CQ: T̃n = n
∑
i∈Sc

β

Tni + n
∑
k∈Sβ

Tnk.

I Oracle: n
∑
i∈Sβ

Tni.

I Thresholding Statistic

Ln(s) =

p∑
k=1

nTnkI

{
nTnk + 1 > λn(s)

}
where λn(s) = 2s log(p).

I Try to exclude those δk = 0 dimensions.
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Two-Sample Tests for Means: Variance Comparison – Strong Signal Case

of nδ2
k > 2 log(p)

Tests Variances

L2 2p+ 2
∑
i 6=j

ρ2
ij + 4n

∑
k,l∈Sβ

δkδlρkl

Oracle 2p1−β + 2
∑

i 6=j∈Sβ
ρ2
ij + 4n

∑
k,l∈Sβ

δkδlρkl

Thresholding 2Lp + 2p1−β + 2
∑

i 6=j∈Sβ
ρ2
ij + 4n

∑
k,l∈Sβ

δkδlρkl

• Lp denotes slowly varying functions in the form of (alogp)b.
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Multi-level Thresholding: Weak Signal Case

Weak Signals: δ2
k = 2rlogp/n for r < 1.

MLn = max
s∈Sn

Ln(s)− µ̂Ln(s),0

σ̂Ln(s),0

,

Sn = {sk : sk = n(X̄
(k)
1 − X̄(k)

1 )2/(2logp) for k = 1, · · · , p}.

Theorem. Under Conditions C1-C3 and H0,

P

{
a(logp)MLn − b(logp, η) ≤ x

}
→ exp(−e−x),

where a(y) = (2logy)
1
2 and b(y, η) = 2logy + 2−1loglogy − 2−1log{ 4π

(1−η)2
}.
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Detection Boundary of Multi-level Thresholding for Means

Multi-level Thresholding test rejects H0 if

MLn ≥ Gα = {qα + b(logp, η)}/a(logp),

qα is the upper α quantile of the Gumbel distribution.

Define

%(β) =


β − 1

2
, 1

2
≤ β ≤ 3

4
;

(1−
√

1− β)2, 3
4
< β < 1,

Theorem Assume Conditions C1-C3. If r > %(β), the sum of type I and II errors

of the multi-level thresholding test converges to zero as α→ 0 and p→∞.

I The same “detection boundary” as the optimal one for Np(µ, Ip) case.

I Signal enhancement by transforming data with the precision matrix Ω =

Σ−1.

I Improved detection boundary: lower than ρ(β).

I See Chen, Li and Zhong (2019) for details.
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Two Sample Tests for Covariance Matrices

I H0 : Σ1 = Σ2 vs Σ1 6= Σ2.

I Sn1 = (sij1), Sn2 = (sij2): two sample covariances

I θij1 = Var{(Xki−µ1i)(Xkj−µ1j)} and θij2 = Var{(Yki−µ2i)(Ykj−µ2j)}

I θ̂ij1 = 1
n1

∑n1
k=1{(Xki − X̄i)(Xkj − X̄j)− sij1}

2 p→ θij1

I θ̂ij2 = 1
n2

∑n2
k=1{(Yki − Ȳi)(Ykj − Ȳj)− sij2}

2 p→ θij2

Mij =
(sij1 − sij2)2

θ̂ij1/n1 + θ̂ij2/n2

, 1 ≤ i ≤ j ≤ p.

19 / 60



Existing Work

I Bai et al. (2009, AoS): Corrected Likelihood Ratio test using RMT.

I Cai, Liu and Xia (2013): Lmax statistic Mn = max1≤i≤j≤pMij

I Only use the maximal signal

I Li and Chen (2012): L2 statistic, sum over all Mij

I Include too many uninformative entries

I Srivastava and Yanagihara (2010): Also L2 statistic to measure

tr(Σ2
1)/(tr2(Σ1))− tr(Σ2

2)/(tr2(Σ2))
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L2-Test Statistic: Li and Chen (2012)

I Target on Square of Frobenius norm:

tr{(Σ1 − Σ2)2} = tr(Σ2
1) + tr(Σ2

2)− 2tr(Σ1Σ2).

I Note that Σ1 = Σ2 if and only if tr{(Σ1 − Σ2)2} = 0.

I Although the Frobenius norm is large, it brings two advantages.

I (i) Relatively easier to analyze for test procedures and power formula.

I (ii) Can target on certain sections of the covariance matrix.
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Unbiased estimator of tr(Σ2
h) and tr(Σ1Σ2)

For h = 1 or 2,

Anh =
1

nh(nh − 1)

∑
i6=j

(X
′
hiXhj)

2 −
2

nh(nh − 1)(nh − 2)

?∑
i,j,k

(X
′
hiXhjX

′
hjXhk)

+
1

nh(nh − 1)(nh − 2)(nh − 3)

?∑
i,j,k,l

(X
′
hiXhjX

′
hkXhl),

For tr(Σ1Σ2):

Cn1n2
=

1

n1n2

∑
i,j

(X
′
1iX2,j)

2 −
1

n1n2(n1 − 1)

∑
i6=k,j

(X
′
1iX2jX

′
2jX1k)

−
1

n1n2(n2 − 1)

∑
i6=k,j

(X
′
2iX1jX

′
1jX2k)

+
1

n1n2(n1 − 1)(n2 − 1)

∑
i6=k,j 6=l

(X
′
1iX2jX

′
1kX2l),
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Test statistic

Tn1,n2 = An1 +An2 − 2Cn1n2 .

I E(Tn1,n2) = tr{(Σ1 − Σ2)2}.

I Leading order variance:

σ2
n1,n2

=
∑2
i=1

[
4
n2
i
tr2(Σ2

i ) + 8
ni
tr{(Σ2

i − Σ1Σ2)2}

+ 4∆i
ni
tr{Γ′i(Σ1 − Σ2)Γi ◦ Γ′i(Σ1 − Σ2)Γi}

]
+ 8
n1n2

tr2(Σ1Σ2).

I Under H0: Σ1 = Σ2 = Σ,

σ2
0,n1,n2

= 4(
1

n1
+

1

n2
)2tr2(Σ2).
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Assumptions

I A1: As min{n1, n2} → ∞, n1/(n1 + n2)→ κ ∈ (0, 1).

I A2: min{n1, n2} → ∞, p(n1, n2)→∞ and for i, j, k and l ∈ {1, 2},
tr{(ΣiΣj)(ΣkΣl)} = o{(tr(ΣiΣj)tr(ΣkΣl)}.

I A3: Xij = ΓiZij + µi,

where ΓiΓ
′
i = Σi; E(Zij) = 0, Var(Zij) = Imi .
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Asymptotic Normality of Tn1,n2

I Under Assumptions 1-3, as min{n1, n2} → ∞

σ−1
n1,n2

[
Tn1,n2 − tr{(Σ1 − Σ2)2}

]
d−→ N(0, 1).

I Variance Estimation:

σ̂2
0,n1,n2

=: 2
n2
An1 + 2

n1
An2

Ani
tr(Σ2

i )

p−→ 1 and
σ̂0,n1,n2

σ0,n1,n2

p−→ 1.
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Test Procedure and Power

I A nominal α level test rejects H0a if

Tn1,n2 ≥ σ̂0,n1,n2zα

where zα is the upper-α quantile of N(0, 1).

I Power of the test

Φ

(
−Zn1,n2(Σ1,Σ2)zα +

tr{(Σ1 − Σ2)2}
σn1,n2

)
,

Zn1,n2(Σ1,Σ2) = (σn1,n2)−1{ 2

n2
tr(Σ2

1) +
2

n1
tr(Σ2

2)}.

I Li-Chen Test operates under weak assumptions

I but the power would not be high for sparse and faint signals.
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Standardization of Sample Covariances

I Sn1 = (sij1), Sn2 = (sij2): two sample covariances

I θij1 = Var{(Xki−µ1i)(Xkj−µ1j)} and θij2 = Var{(Yki−µ2i)(Ykj−µ2j)}

I θ̂ij1 = 1
n1

∑n1
k=1{(Xki − X̄i)(Xkj − X̄j)− sij1}

2 p→ θij1

I θ̂ij2 = 1
n2

∑n2
k=1{(Yki − Ȳi)(Ykj − Ȳj)− sij2}

2 p→ θij2

Mij =
(sij1 − sij2)2

θ̂ij1/n1 + θ̂ij2/n2

, 1 ≤ i ≤ j ≤ p.
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Thresholding for Covariance Testing

I Under the null hypothesis some assumptions, as n, p→∞,

P
{

max
1≤i≤j≤p

Mij > 4 log(p)
}
→ 0.

I Thresholding on Mij

Tn(s) =
∑

1≤i≤j≤p

MijI{Mij > λp(s)}

I λp(s) = 4s log(p) for a thresholding parameter s ∈ (0, 1)
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Sparse and weak signal: A real example on Neg and Bcr
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Sparse and Weak Alternative Hypothesis

I n = n1n2/(n1 + n2) and q = p(p+ 1)/2

I Number of nonzero δij : ma = bq(1−β)c for a β ∈ (1/2, 1)

I Nonzero value: δij = δa =
√

4r log(p)/n if δij 6= 0

I β ∈ (1/2, 1): sparsity signals; r ∈ (0, 1): faint signals

H0 : δij = 0 for all 1 ≤ i ≤ j ≤ p vs.

Ha : there are ma nonzero δij with strength δa.
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Main assumptions

Assumption 1A. Exponential rate: log p ∼ n$, $ ∈ (0, 1/3).

Assumption 1B. Polynomial rate: n ∼ pξ, ξ ∈ (0, 2).

Assumption 2. Subgaussian distribution: E[exp{t(Xkj − µ1j)
2}] ≤ C and

E[exp{t(Ykj − µ2j)
2}] ≤ C.

Assumption 3. β-mixing: {Xkj}pj=1 and {Ykj}pj=1 are β-mixing after certain

permutation and the mixing coefficients satisfying polynomial rate.

Remark:

I Tn(s) is invariant to permutations of {Xkj}pj=1 and {Ykj}pj=1.

I No need to know the permutation.

I The β-mixing is satisfied under weak assumptions on {Xkj}pj=1 and {Ykj}pj=1

(Mokkadem, 1988). For example, normally distributed data with banded or

block diagonal covariance matrix are special case.
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Mean and variance of Tn(s)

I φ(·) and Φ̄(·) be the density and survival functions of the standard normal

distribution, Lp = a(log p)b with b > 0.

I µ0(s) = E{Tn(s)|H0} and σ2
0(s) = Var{Tn(s)|H0}.

Proposition

Under Assumptions 1A or 1B and some other assumptions,

µ0(s) = µ̃0(s){1 +O(Lpn
−1/2)}

where

µ̃0(s) = q{2λ1/2
p (s)φ(λ1/2

p (s)) + 2Φ̄(λ1/2
p (s))}.

In addition, under either (i) Assumption 1A with s > 1/2 or (ii) Assumption

1B with s > 1/2− ξ/4, σ2
0(s) = σ̃2

0(s){1 + o(1)}, where

σ̃2
0(s) = q[2{λ3/2

p (s) + 3λ1/2
p (s)}φ(λ1/2

p (s)) + 6Φ̄(λ1/2
p (s))].
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Challenge: asymptotic distribution of Tn(s)?

I Can’t just mixing results since {sij} are not mixing

I Can’t apply Martingale CLT due to the thresholding
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Coupling + Martingale CLT
Matrix Blocking

{1, . . . , a}, {a+ 1, . . . , a+ b}, {a+ b+ 1, . . . , 2a+ b}, {2a+ b+ 1, . . . , 2a+ 2b}, . . .

S1 R1 S2 R2 . . .

I Small blocks and triangles are negligible

I B1,n: Summation over all big blocks

I XSm ,YSm : the segments of data

matrices with the columns in Sm

I ZSm = {XSm ,YSm}

I Coupling (Berbee 1979):

Z∗Sm ≈ ZSm , {Z∗Sm} independent

I Big blocks in different row and columns

are independent
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Coupling + Martingale CLT
U-statistic Equivalence

I U-statistic formulation: B1,n ∼
∑
m1<m2

f(Z∗Sm1
,Z∗Sm2

)

I Apply Martingale CLT, build filtration on {Z∗Sm}

Theorem

Suppose Assumptions 2 and 3 are satisfied. Then, under the H0, and either (i)

Assumption 1A with s > 1/2 or (ii) Assumption 1B with s > 1/2− ξ/4, we

have

σ−1
0 (s){Tn(s)− µ0(s)} d→ N(0, 1) as n, p→∞.
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Multi-level Thresholding Test (MTT)

I How to choose s in reality?

I Standardization of Tn(s): Un(s) = σ̃−1
0 (s){Tn(s)− µ̃0(s)}

I Maximize Un(s) over multiple thresholds

Vn(s0) = sup
s∈(s0,1−η]

Un(s)

I s0 = 1/2 for log p ∼ n$, or s0 = 1/2− ξ/4 for n ∼ pξ

I η is a small positive constant, say 0.05.

I To simplify the calculation, it can be shown that

Vn(s0) = sup
s∈Sn(s0)

Un(s).

where

Sn(s0) = {tij : tij = Mij/(4 log(p)) and s0 < tij < (1− η)} ∪ {1− η}.
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Multi-level Thresholding Test (MTT)

Theorem

Suppose Assumptions 2 and 3 are satisfied. Then, under the H0, and either (i)

Assumption 1A with s > 1/2 or (ii) Assumption 1B with s > 1/2− ξ/4,

P{a(log(p))Vn(s0)− b(log(p), s0, η) ≤ x} → exp(−e−x),

where a(y) = (2 log(y))1/2 and b(y, s0, η) = 2 log(y) + 2−1 log log(y)

−2−1 log(π) + log(1− s0 − η).
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Multi-level Thresholding Test (MTT)

I Reject H0 if

Vn(s0) > {qα + b(log(p), s0, η)}/a(log(p)),

where qα is the upper α quantile of the Gumbel distribution.

I Size distortion as the convergence to the Gumbel distribution is slow.

I A bootstrap method proposed in the simulation.
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Detection boundary for covariances

Sparse and weak alternative hypothesis:

H0 : δij = 0 for all 1 ≤ i ≤ j ≤ p vs.

Ha : there are ma nonzero δij with strength δa.

I n = n1n2/(n1 + n2) and q = p(p+ 1)/2

I ma = bq(1−β)c for a β ∈ (1/2, 1)

I δij = δa =
√

4r log(p)/n if δij 6= 0
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Detection boundary for MTT

I The standardized signal strength

rij = r/{(1− κ)θij1 + κθij2}

where κ = limn1,n2→∞ n1/(n1 +n2), θij1 = Var{(Xki−µ1i)(Xkj −µ1j)}
and θij2 = Var{(Yki − µ2i)(Ykj − µ2j)}

I The maximal and minimal standardized signal strength

r̄ = max
(i,j):σij1 6=σij2

rij and
¯
r = min

(i,j):σij1 6=σij2
rij .

I The class of covariances with sparse and weak differences:

C(β, r̄,
¯
r) =

{
(Σ1,Σ2) : under sparse and weak alternatives Ha,

r̄,
¯
r and assumptions defined previously

}
I For any (Σ1,Σ2) ∈ C(β, r̄,

¯
r), the power of the MTT is

Powern(Σ1,Σ2) = P
[
Vn(s0) > {qα + b(log(p), s0, η)}/a(log(p))|Σ1,Σ2

]
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Detection boundary for MTT

I Consider ξ ∈ (0, 2] for n ∼ pξ and ξ = 0 for log p ∼ n$,

ρ∗(β, ξ) =


(
√

4−2ξ−
√

6−8β−ξ)2
8

, 1/2 < β ≤ 5/8− ξ/16,

β − 1/2, 5/8− ξ/16 < β ≤ 3/4,

(1−
√

1− β)2, 3/4 < β < 1.

I Under the previous assumptions, as n, p→∞,
I If

¯
r > ρ∗(β, ξ), inf(Σ1,Σ2)∈C(β,r̄,

¯
r) Powern(Σ1,Σ2)→ 1;

I If r̄ < ρ∗(β, ξ), sup(Σ1,Σ2)∈C(β,r̄,
¯
r) Powern(Σ1,Σ2)→ 0.

I As ξ → 2, ρ∗(β, ξ) approaches to ρ(β), which is the optimal detection

boundary for testing the means with uncorrelated Gaussian data.

I Restricting s ≥ s0 = 1/2− ξ/4 elevates the detection boundary ρ∗(β, ξ) of

the proposed MTT for 1/2 < β ≤ 5/8− ξ/16 as a price for controlling the

size of the test.
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Detection boundary for MTT
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Figure: The detection boundary ρ∗(β, ξ) of the proposed MTT for ξ = 0, 0.75, 1.5.
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Some remarks on detection boundary

I The Lmax test of Cai et al. (2013) is consistent if the maximal standardized

signal strength r̄ > 4.

I The L2 test of Li and Chen (2012) does not have non-trivial power when

β > 1/2.

I The proposed multi-level thresholding test is more powerful in detecting

sparse and weak signals as it only requires rij ∈ (0, 1).

I Detection boundaries indicate that the differences between Σ1 and Σ2 are

at the order of
√

log(p)/n.

I Is the order
√

log(p)/n minimax optimal?
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Minimax optimality

I Let Wα be the collection of all α-level tests for the hypotheses, i.e.,

P (Wα = 1|H0) ≤ α for any Wα ∈ Wα.

I Define

C(β, c) =
{

(Σ1,Σ2) : under sparse and weak alternatives of Ha with rij ≥ c

for all σij1 6= σij2
}
.

I Detection boundary results indicate that for sufficiently large constant c, as

n, p→∞,

inf
(Σ1,Σ2)∈C(β,c)

{Power of the MTT Test} → 1.

I The lower bound (log(p)/n)1/2 for signals in C(β, c) is optimal, i.e., there is

no α-level test that can distinguish Ha from H0 with probability approaching

1 uniformly over the class C(β, c0) for some c0 > 0 as shown in the following

theorem.
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Minimax optimality

Theorem

For the Gaussian distributed data and under Assumption 1B, for any

0 < ω < 1− α and max{2/3, (3− ξ)/4} < β < 1, there exists a constant

c0 > 0 such that, as n, p→∞,

sup
Wα∈Wα

inf
(Σ1,Σ2)∈C(β,c0)

P (Wα = 1) ≤ 1− ω.

I Extend the minimax result from the highly sparse signal regime 3/4 < β < 1

in Cai et al. (2013) to max{2/3, (3− ξ)/4} < β < 1.

I The MTT test is at least minimax rate optimal for β > max{2/3, (3−ξ)/4}
as the proposed MTT can detect signals at the rate of {log(p)/n}1/2 for

β > 1/2.
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Simulation

I Compare the proposed test with Srivastava and Yanagihara (2010) (SY), Li

and Chen (2012) (LC) and Cai, Liu and Xia (2013) (CLX).

I The data are generated from

I Xk = Σ
1
2
1 Z1k and Yk = Σ

1
2
2 Z2k.

I Z1k and Z2k are i.i.d. random vectors from a common population:

(i) N(0, Ip);

(ii) Gamma distribution where components of Z1k and Z2k were i.i.d. stan-

dardized Gamma(4,2) with mean 0 and variance 1.
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Simulation

I Define Σ
(0)
1 = D

1
2
0 Σ(∗)D

1
2
0 , D0 = diag(d1, . . . , dp), di

i.i.d.∼ U(0.1, 1),

Σ(∗) = (σ∗ij):

Design 1: σ∗ij = 0.4|i−j|;

Design 2: σ∗ij = 0.5I(i = j) + 0.5I(i, j ∈ [4k0 − 3, 4k0]).

I Under the null hypothesis, Σ1 = Σ2 = Σ
(0)
1 .

I Under the alternatives, Σ1 = Σ
(?)
1 and Σ2 = Σ

(?)
2 , where

Σ
(?)
1 = Σ

(0)
1 + εcIp and Σ

(?)
2 = Σ

(0)
1 + U + εcIp,

U = (ukl)p×p is a banded symmetric matrix with bq1−βc nonzero elements

(ukl =
√

4r log p/n if ukl 6= 0). εc = |min{λmin(Σ
(0)
1 + U), 0}|+ 0.05 is

used to guarantee the positive definiteness of Σ
(?)
1 and Σ

(?)
2 .
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Simulation

I The convergence of MTT to the Gumbel distribution is slow.

I A parametric bootstrap procedure:

I Calculate the multi-thresholding statistic Vn(s0) from the original sample.

I Under the null hypothesis, {Xk}n1
k=1 and {Yk}n2

k=1 were pooled together to

estimate the common covariance (Rothman(2012)), denote as Σ̂.

I For the b-th bootstrap, drew bootstrap samples of {X∗(b)k }n1
k=1 and {Y∗(b)k }n2

k=1

independently from N(0, Σ̂), then calculate the bootstrapped MTT statistic

V∗(b)n (s0).

I Calculate p-value by using Vn(s0) and the bootstrapped samples

{V∗(1)
n (s0), . . . ,V∗(B)

n (s0)}.
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Simulation

Table: Empirical sizes for the tests of Srivastava and Yanagihara (2010) (SY), Li and

Chen (2012) (LC), Cai, Liu and Xia (2013) (CLX) and the proposed multi-level thresh-

olding based on the limiting distribution (MTT) and the bootstrap calibration (MTT-

BT) for Designs 1 and 2 under the Gaussian distribution with the nominal level of

5%.

p (n1, n2) SY LC CLX MTT MTT-BT

Gaussian Design 1

175 (60, 60) 0.048 0.058 0.054 0.088 0.058

277 (80, 80) 0.052 0.052 0.058 0.064 0.056

396 (100, 100) 0.042 0.046 0.058 0.064 0.054

530 (120, 120) 0.056 0.048 0.050 0.056 0.046

Gaussian Design 2

175 (60, 60) 0.060 0.048 0.052 0.094 0.048

277 (80, 80) 0.040 0.060 0.040 0.064 0.052

396 (100, 100) 0.052 0.042 0.044 0.090 0.048

530 (120, 120) 0.050 0.046 0.044 0.060 0.054

49 / 60



Simulation

Table: Empirical sizes for the tests of Srivastava and Yanagihara (2010) (SY), Li and

Chen (2012) (LC), Cai, Liu and Xia (2013) (CLX) and the proposed multi-level thresh-

olding based on the limiting distribution (MTT) and the bootstrap calibration (MTT-

BT) for Designs 1 and 2 under the Gamma distribution with the nominal level of 5%.

p (n1, n2) SY LC CLX MTT MTT-BT

Gamma Design 1

175 (60, 60) 0.046 0.060 0.066 0.110 0.056

277 (80, 80) 0.060 0.050 0.044 0.076 0.044

396 (100, 100) 0.046 0.052 0.046 0.066 0.054

530 (120, 120) 0.060 0.056 0.048 0.060 0.048

Gamma Design 2

175 (60, 60) 0.070 0.056 0.066 0.108 0.056

277 (80, 80) 0.060 0.058 0.068 0.112 0.044

396 (100, 100) 0.060 0.050 0.044 0.068 0.046

530 (120, 120) 0.054 0.056 0.048 0.056 0.048
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Simulation

Figure: Empirical powers with respect to the signal strength r for the tests of Srivastava

and Yanagihara (2010) (SY), Li and Chen (2012) (LC), Cai, Liu and Xia (2013) (CLX)

and the proposed thresholding test (MTT-BT) for Designs 1 and 2 with Gaussian

innovations under β = 0.6 when p = 396, n1 = n2 = 100.
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Simulation

Figure: Empirical powers with respect to the sparsity level β for the tests of Srivastava

and Yanagihara (2010) (SY), Li and Chen (2012) (LC), Cai, Liu and Xia (2013) (CLX)

and the proposed thresholding test (MTT-BT) for Designs 1 and 2 with Gaussian

innovations under r = 0.6 when p = 396, n1 = n2 = 100 respectively.
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Real data analysis

I A microarray dataset of large airway epithelial cells with 22283 genes.

I 187 smokers: 97 persons with lung cancer and 90 persons were healthy.

I Gene Ontology (GO) terms for sets of genes under three broad functional

categories: Biological Processes (BP), Cellular Components (CC) and Molec-

ular Functions (MF).

I 3063 unique GO terms in the BP category, 317 sets in the CC category and

442 sets in the MF category.

I We are interested in identifying gene-sets with different covariance struc-

tures between the smokers with the lung cancer and the controls.

I This will provide useful results toward identifying the differential co-expression

networks and the functionally related genes.
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Real data analysis

I We tested

Hg,0 : Σ1g = Σ2g vs. Hg,a : Σ1g 6= Σ2g,

where Σ1g and Σ2g denote the population covariance matrices of the cancer

and control groups for the gth gene-set.

I Controlling the FDR (false discovery rate) at 5%.

I The proposed test found more significant gene-sets than the other tests

among BP and CC categories.

I The gene set GO:0001824 in the BP category was only discovered by the

proposed MTT-BT test, which had been shown to be highly correlated with

the lung cancer in other studies.
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Real data analysis

Table: Cross tabulations of the numbers of significant gene-sets with different

covariance matrices by the four tests for the three Gene Ontology categories.

The numbers on the diagonals show the significant gene-sets by the four tests,

respectively, while the off-diagonal entries are the number of common gene-sets

by any two tests.

Biological Processes Cellular Component

Methods MTT-BT CLX LC SY MTT-BT CLX LC SY

MTT-BT 64 5 9 2 13 0 3 0

CLX 23 0 0 1 0 0

LC 54 4 9 1

SY 9 1

Molecular Functions

MTT-BT 10 2 3 0

CLX 5 1 0

LC 14 1

SY 1
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Conclusion

I We proposed a powerful multi-thresholding test for high-dimensional covari-

ances;

I The detection boundary of the MTT test;

I The minimax optimality;

I The MTT test can be extended to correlation matrices.
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Thank you!
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