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The model

Vit = linfie + linfor + e = e+ e, 1=1,2,...,n; t=1,2,...,T, (1)

where f; = (f1¢, for)* are two common factors, €; = (¢;1, l;2)* are the
corresponding factor loadings, and & is the error component, in which the
symbol “*" denotes the conventional conjugate transpose.
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Scenario : No true common factors

Under this case, the factor loadings are generated as £; = (0,0)*. When
the original data follow AR(1) model (v = 0.2), Figures 1 and 2 provide all
eigenvalues of the sample covariance matrix as (7, n) = (20, 40) and

(T, n) = (40, 20), respectively. There are no spiked eigenvalues in view of
these graphs, which correctly reflect the fact that there are no common
factors in the original data.

Guangming Pan, (USTC) Spiked Eigenvalues of High Dimensional Se November 19, 2019 5/75



Guangm

Eigenvalues of Simulated Data

o

OO000000COO00000000

5 10 15 20 25 30 35 40
From the largest to the smallest

Figure: 1 T =20,n = 40,7 = 0.2

Dimensional Se

ovember 19, 2019

6/7



Guangming Pan,

Eigenvalues of Simulated Data

25

1

5

4 6 8 10 12 14 16 18 20
From the largest to the smallest

Figure: 2T = 40,n = 20,7 = 0.2

vember 19, 2019

7/175



Guangm

250

200

2 @
S =]

Eigenvalues of Simulated Data
2

o
o

o N
00000000000006C000O00000CCEO0000000

5 10 15 20 25 30 35 40
From the largest to the smallest

Figure: 37T =20,n=40,y=1

Dimensional Se

ovember 19, 2019

/7



Guangming Pan,

Eigenvalues of Simulated Data

350

300

"
i
S

"
=1
S

@
]

=]
=]

50

0 2 o o 5 = -
0 2 4 6 8 10 12 14 16 18 20
From the largest to the smallest

Figure: 4 T =40,n =20,y=1

vember 19, 2019



Scenario : No true common factors

However, as the data observations are nonstationary (7 = 1), Figures 3
and 4 show that there is one spiked eigenvalue from the sample covariance
matrix, while the true number of common factors is 0.

This example demonstrates that PCA may not be informative accurately
on high dimensional data with dependent sample observations.
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Outline

© High Dimensional Separable Covariance Model
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High Dimensional Separable Covariance Model

Consider an n-dimensional random vector y with observations
Y1,¥2,-..,yr. Pool all observations together into a T' X n matrix
Y = (y1,y2,.-.,y7)*. The data matrix Y has the structure

Y = I'XQ'/2 (2)

where X = (x1,...,Xpn) = (%ij) (r41)xn 15 @ (T'+ L) X n random matrix
with i.i.d. elements; X =TT and Q are T' x T and n X n deterministic
non-negative definite matrices, respectively. Here T'is a 7' x (T'+ L)
deterministic matrix.
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Separable covariance matrix

@ Actually the matrix I" describes dependence among sample
observations.

@ The matrix €2 measures cross-sectional dependence for y under study.

@ Under this setting, the sample covariance matrix of y can be
expressed as I'XQX*I'*. It is also called separable covariance matrix.
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Largest spiked eigenvalues

@ We are interested in the largest spiked eigenvalues of matrix €2, which
describes the cross-sectional dependence.

@ In the classical procedure of using PCA, spiked empirical eigenvalues
from sample covariance matrix I XQX*T'* are utilized to
approximate those of the matrix €2.

@ In this paper, we investigate the spiked empirical eigenvalues from an
innovative view: how the the spiked eigenvalues of the matrix 3 (due
to the dependent sample) affect the spiked sample eigenvalues ?

@ To this end, we do not impose any spiked structures on the matrix €2.
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spikiness of the matrix X

We assume spikiness of the matrix 3 through the following
decomposition. Let the spectral decomposition of I' be VAY/2U, where V
and U are T'x T and T x (T + L) orthogonal matrices respectively
(VV* =UU* =1), A is a diagonal matrix composed by the descent
ordered eigenvalues of X = I'T"*. Moreover, we write A = (1})3 AO >

P

where Ag = diag(p1, ..., i), Ap = diag(pr i1, ..., o), and pq, ..., g
are referred to the spiked eigenvalues that are significantly bigger than the

rest. In addition, we write U = <gl) and ¥y = UsApU,.
2
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e Asymptotic Performance of Largest Eigenvalues
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Asymptotic Performance of Largest Eigenvalues

This section is to establish the asymptotic distribution of the largest spiked
empirical eigenvalues. First, we make the following assumptions.

Assumption (Moment Conditions)

{s: i=1,...,T+ L, j=1,...,n} are i.i.d random variables such that
Ez;; = 0. Elv/nzi;|* =1 and E|y/nz;|* = v4 < co.
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Assumption (Dependent Sample Structure)

Of = UK = ... = UK—n, KOL] = UK-—np+1--- < O] = [bny = ... = U1,
where n1,..., ng are finite. Moreover, there exists a small constant ¢ > 0
such that a;—1 — a; > ca; fori = 1,2, ..., L and pug — pr11 > Clk.
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Assumption (Cross-sectional Structure)

The matrix € is nonnegative definite and its effective rank
() = tIITS%SIIZ) — 00, where ||£2||2 means the spectral norm.
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Assumption 4

The spiked eigenvalues of the population covariance matrix are much
bigger than the rest of the eigenvalues. Precisely speaking, for Ve > 0,
there is K., independent of n and 7', such that when n and T are big

enough,
Z;TF:KE Hi > €
WK 2

Assumption (Spiked Dependent Sample Structure)

(3)

v
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Remarks about Assumptions

Note that Assumptions 2 and 4 impose a spiked structure on X while
Assumption 3 could endure either spiked or non-spiked structure on £2.
This is consistent with the aim of this paper to investigate the effect
caused by dependent sample observations on the spiked sample
eigenvalues.
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Remarks about Assumptions

When 1; =717 and ¢ > 0 one can find that Assumption 4 holds.
Moreover, Section 4.2 below shows that Assumption 4 holds in the unit
root setting. In addition, define a near unit root model of the form:

L

Yit = pYit—1+ > bnZit—n, (4)
h=0

where T'(1 — p) is bounded as T goes to infinity. It can also be verified
that Assumption 4 holds in such models. Also, heterogeneous
high—dimensional time series models can also be covered if the
corresponding variances satisfy Assumption 4.
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the asymptotic joint distribution of the largest

spiked eigenvalues

Denote the i-th largest sample eigenvalue of IXQX*I'™ by A;. Set
m; = Zz;ll nj, for all i =1,2,..., L. The following theorem establishes
the asymptotic joint distribution of the largest spiked eigenvalues.
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the asymptotic joint distribution of the largest
spiked eigenvalues

Suppose that Assumptions 1-4 hold,

n ‘trﬂ \ .t'r’ﬂ \ 'trﬂ i)R
s t’l“(ﬂ2) mi+1 — i n mi+2 — Mg 7 000 ms+n; — Hi n

where R; are the eigenvalues of an n; x n; matrix R; with the Gaussian
elements, ER; = 0, the covariance of the (R;)g, i, and (R;),1, is
2

. n * * * *
Jim. ) Cov(uy,, 43, XQX Uy 41y, 0,4, XX 1,14, )(6)

Here the limit of (6) is bounded.
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the asymptotic joint distribution of the largest
spiked eigenvalues

Theorem

Moreover, if ££ > ¢ > 1, A\, 47 and \,,. 1, are asymptoticall
I i+f itg ymp y

independent, where 1 < f < n; and 1 < g < n;. Particularly when n; =1
foralli=1,...,K we have

)\1 t'rﬂ )\2 _ ,UQtTQ
11 \/var 1XQX*ul ’ ,ug\/var uwXOQX*uyp) Y
Ak — p 28 d

i/ var(wi XQX*ug)
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Remarks about the Theorem

Note that

tr(2) tr(Q) < tr(Q) < tr(Q)
[1€2]|2 \/HQHQtr Vir(Q2) ~ 192

(7)

From this and Assumption 3, we can find that the standard deviation of \;
has the smaller order than the mean of \;. So the sample eigenvalues
{Xiyi < K} have the same order as ;7> trfl
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Remarks about the Theorem

It indicates that the sample eigenvalues A1, --- , Ax are spiked under this
case no matter whether €2 has spiked eigenvalues or not. This
phenomenon suggests that PCA may reflect inaccurate information of the
cross-sectional structure €2 due to the dependent sample observations.
This is in contrast to the results Baik and Silverstein (2006) for the
independent sample observations which establish one to one
correspondence between the sample spiked eigenvalues and the population
spiked eigenvalues due to the cross-sectional structure €2.
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Two Propositions

The following two propositions further investigate the relations between
the leading sample eigenvalues and the eigenvalues of 3 due to the
dependent sample observations.

Proposition

Under the conditions of Theorem 2, there exists a positive constant ¢ such
that lim inf7_ o m%*) > ¢ and

A1
li Pl———————— =1, 8
nToo (tr(I‘XQX*I‘*) ” C) (®)
Moreover, when 1 < ¢ < K,

)\. .
B o lin probability as n, T — co. (9)
Airl Hit1
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Propo
Let the conditions of Theorem 2 hold. For 1 <i < K — 1, if
ﬁ_)\i-ﬁ-l A i1 _/\v+1
i Hi o Mitl | Ki Pigl T wy i
min {m+1’ m+2} > ¢ > 1, then Nz N VP ES B has the same
Hit2  Pitl Hit2
asymptotic distribution as =22, where {v; : 1 < i < 3} are i.i.d standard
. V3 —V2
normal random variables. )
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Remark about Propositions

Proposition 1 shows that the ratio of the neighboring spiked empirical
eigenvalues approximate that of the spiked eigenvalues from the dependent
sample structure. A central limit theorem is provided for the ratio statistic
constructed from the spiked empirical eigenvalues in Proposition 2.
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@ Inference on High Dimensional Time Series
@ Implementing Factor Analysis on Our Model
@ Unit Root Models Satisfying Assumption 4
@ A New Test for Unit Root against Factor Model
@ More Thoughts about Panel Data Structures
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@ Inference on High Dimensional Time Series
@ Implementing Factor Analysis on Our Model
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Implementing Factor Analysis on Our Model

@ Proposition 1 implies that the largest sample eigenvalue has the same
order as the sum of all eigenvalues.

@ The largest eigenvalue is so large that the methods in
Ahn and Horensten (2013) and Bai (2004) would both estimate the
number of factors to be the one bigger than zero even though there is
no factor in our model.

@ Similarly, the relation between A; and \;11 leads to that Onatski
(2010) would estimate the number of factors to be the one bigger
than zero even though there is no factor in our model. We examine
this one by one below.
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The method in Onatski (2010)

@ The method in Onatski (2010) is based on the difference between the
i—th largest eigenvalue and the i 4+ 1-th one. In a few words, the idea
of Onatski (2010) is that if there is no factor, for any i > 1, the
difference between the i—th largest eigenvalue and the ¢ + 1-th one
should be very small.

@ Recalling (9), we can find that the difference between the i-th largest

eigenvalue and the i 4 1th one in our model can be large when
i
Mi+1

@ In other words, the method in Onatski (2010) would get a non-zero

estimate for the number of factors in our model when #‘_‘il > 1.
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The method in Ahn and Horensten (2013)

@ The method in Ahn and Horensten (2013) is based on the ratio

between two successive largest eigenvalues. It defines a mock
min{n,T} i

eigenvalue \g = m Then the estimator is

2 Ak
ER = max .
B o<k <hman Ak+1

(10)

@ Note that Ay has a smaller order than the trace of the sample
covariance matrix. Then the method of Ahn and Horensten (2013)
implies that if there is no factor, the largest eigenvalue should have a
smaller order than the trace of the sample covariance matrix.

@ (8) shows that the largest eigenvalue in our model has the same order
as the trace of the sample covariance matrix.

@ In other words, the method in Ahn and Horensten (2013) would get a
non-zero estimate for the number of factors in our model.
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The method in Bai (2004)

@ The methods in Bai (2004) is based on penalty functions. Briefly
speaking, the idea of Bai (2004) is that if there is no factor, the
largest eigenvalue should be smaller than the penalty function. The
criterion has the form:

n T
in K o2
PC(k) = nTE_;; it — AV ER? 4 kg(n,T), (11)
where g(n,T) satisfies some properties in Bai (2004).

@ However, we can find that all the penalty functions have a smaller
order than the trace of the sample covariance matrix.

@ Recalling (8), the methods in Bai (2004) would get a non-zero
estimate for the number of factors in our model.
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@ Inference on High Dimensional Time Series

@ Unit Root Models Satisfying Assumption 4
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The unit root model

L

Yit = Yit—1 + Z bnZit—h, (12)
h=0

where 1 <i<n,1<t<T and L can be finite or infinite. Here
n
2t =Y Tistar, (13)
s=1

wherel<i<nand1-L<t<T.

Guangming Pan, (USTC) Spiked Eigenvalues of High Dimensional Se November 19, 2019



The unit root model

Let Y = (y;;) be an n x T matrix and Y be an n x T matrix with all
T

entries of the ith row being # We next specify some conditions so
that Theorem 2 can be applied to the sample covariance matrix:

(Y -Y)"(Y -Y).

November 19, 2019 39 /75
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Assumption (Moment Conditions)

{zy:i=1,...,n,t=1—L,...,T} are independent random variables such
that Ez;; = 0. E|\/nzy|? = 1 and E|y/nzy|* = 74 < co. Write
X = (X1, ..y Xp)-
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Assumption (Cross-sectional Structure)

Q = Y*Y satisfies Assumption 3 with the n x n matrix X = (Y;5).
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Assumption (Serial Correlation)

The coefficients {b;}1, in (12) satisfy Zf:0i|bi| < oo and Zz’L:o b; # 0.
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The form of the unit root

Write H=1 — ITI* where the T" x 1 vector 1 consists of all one. Let
T'=HCW and p1 > uo > ... > ur be the ordered eigenvalues of I'T"*,
With a simple calculation, the sample covariance matrix can be expressed
as

(Y -Y) (Y -Y)=HY"'YH* = IXQX'T*. (14)
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Theorem of the unit root

Theorem

Let Assumptions 5-7 hold. Denoting the k-th largest eigenvalue of (14) by
Ak, for any fixed k, we have

n A= Ny — R, 22
Q2)

d
, 4 N(0,Ly). (15
2t ( m o m ) (0,5)- (19)

v

Propositions 1-2 hold as well for model (12).

Guangming Pan, (USTC) Spiked Eigenvalues of High Dimensional Se

November 19, 2019 44 / 75



@ Inference on High Dimensional Time Series

@ A New Test for Unit Root against Factor Model
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Two models

We below focus on a nonstationary factor model of the form:
M1y = £ + ug, (16)

where f; is a r-dimensional(r is fixed) vector, wu;; is a stationary term and
{ft}t:1,~~~ T are independent of {uit}izl,... nt=1, T
We then recall the unit root model discussed in Theorem 3 as follows:

L
M2: yi =yir—1+ Z bnzit—n (17)
h=0
for1 <i<mnand1l<t<T, where L can be finite or infinite,
zit = > o4 Tists and Assumptions 5-7 hold.
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some remarks

Note that Model M1 is equivalent to the following form:
M3 yir = yig—1 + € (f — fi1) + wi — wiz—1 = yig—1 + v,  (18)

which seems to be similar to model M2. However M3 is different from M2
in two aspects.

o At first, if f; —f,_1 # 0, £;(f; — f;_1) could lead to a strong
cross-sectional dependence (strong factor) such that Assumption 6 is
violated.

o Furthermore, even if f; — f;_1 = 0, then v;; = u;; — u;;—1 doesn't
necessarily satisfy ZiL:o b; # 0 in Assumption 7.

@ Here one should note that (3%, b;)? contributes to the limit of the

first few largest eigenvalues of the corresponding sample covariance
matrix.
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Differences between M1 and M2

As a result, the eigenvalues of these two models behavior differently.

@ When the number of factors in M1 is r, there is a significant drop
from the r-th largest eigenvalue of M1 to its (r + 1)-th largest
eigenvalue.

@ In contrast the ratio of the i-th largest eigenvalue of M2 to its
(i + 1)-th largest eigenvalue is asymptotically equal to (i + 1)2/i? so
that there is no significant drop between them.
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The new test statistics

We below propose a new statistic for M1 and M2. Define

i ! (19)

" 2 (1 cos (T5))

and
i
_ M

o )\2—>\3%.
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The new test statistics

Under the conditions of Theorem 3, for any fixed k,

~ )\,L
n,%lgoo P (kER orgfgk { )‘H—l } 1) ( )

Furthermore, when

. tr(92)
lim — "/ _ =, 22
n,T—oo Ty /tr(22) (22)
the statistic 73,y has the same asymptotic distribution as % where

{v; : 1 <4 < 3} are i.i.d standard normal variables.
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The new test statistics

Note that ——&_ < /n. So when ¥ — 0, (22) holds.

Vir(Q2) —

Equation (21) implies that using kzx in Ahn and Horensten (2013) may
mistakenly think a unit root model as a single factor model.

Guangming Pan, (USTC) Spiked Eigenvalues of High Dimensional Se November 19, 2019 51 /75



The new test statistics

However using the statistic 1), ¢ could distinguish between them because
for single factor models (see Assumption 1 in Onatski (2010), Assumptions
A and B in Bai (2004) and Assumption A in Ahn and Horensten (2013)),

)\—1 — 00 in probability as n, T — oo. (23)
2

This ensures the power of the statistic T, specified below.

Proposition

In single factor models(under the assumptions of Onatski (2010), Bai
(2004) or Ahn and Horensten (2013)), the following holds

Ty — oo in probability as n, T — oo. (24)
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@ Inference on High Dimensional Time Series

@ More Thoughts about Panel Data Structures
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four kinds of panel data structures

We have more thoughts about distinguishing four kinds of panel data
structures:

(1) stationary and weak cross-sectional dependence;
(2) stationary and strong cross—sectional dependence;
(3) unit root and weak cross—sectional dependence;
(4) unit root and strong cross—sectional dependence.

Here by strong cross—sectional dependence we mean that its effective rank
r*(Q) = Tf;(:'r) — ¢ > 0 while weak cross—sectional dependence implies
that its effective rank r*(€2) — +o0.
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stationary and weak cross-sectional dependence

@ Theorem 2.3 of Zhang, Pan and Gao (2018) shows that when the
data belongs to the first kind, the largest eigenvalue of sample
covariance matrix has smaller order than the trace.

@ On the other hand, the largest eigenvalues from three other types of
data have the same order as the trace.

@ So we can distinguish the first type, stationary and weak
cross—sectional dependence, from others.
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the remaining three cases

For the remaining three cases, we consider using PCA for them.

@ Since PCA is a linear combination of data on the cross section we
believe it has the same time-dependence as the initial data.

@ In other words, from the first PC we may tell the difference between
the second type stationary structure and the remaining two
nonstationary structures since there are plenty of methods available
for the univariate variable.

@ So we can distinguish the second case from two others.

o Finally, we can use T),; to distinguish the third case from the fourth
case.
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© Simulations
@ The Simulation about Proposition 3
@ The Simulation about Proposition 4
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© Simulations
@ The Simulation about Proposition 3
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the critical value

At first we compute the critical value by simulating 7*="2 where
{v; : 1 <4 < 3} are i.i.d standard Gaussian random variables based on
500000 replications. The quantiles of ﬁ are reported in Table 1.

Table: The quantiles of ﬁ based on 500000 replications

2.5% quantile 5% quantile 95% quantile 97.5% quantile
-11.6549 -6.0392 4.9932 10.4598

Then we can use a two-tailed test with the critical values -11.6549 and
10.4598. We can also use one-side test with the critical values
O5L = —6.0392 or 0953 = 4.9932.
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the setting and the size

We consider the following setting:
Yit = Yit—1 + Vzig—1 + i,

where 1) = 0.5 and 2 = (Qi,j) = (O.B‘i*j|>. The estimated sizes for the
test statistic T,y based on 1000 replications, different critical values and
different values of n and T are reported in Tables 1-3. Tables 1-3 show
that T}y has stable sizes with different critical values. We can choose
-11.6549 and 10.4598 as the critical values of a two-tailed test.
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Table: 1 The size results on T, ¢ based on 1000 replications

n T two-side Csr.  Cosr
20 20 0.069 0.064 0.052
20 40 0.065 0.068 0.051
20 60 0.067 0.059 0.055
20 80 0.074 0.062 0.063
20 100 0.064 0.060 0.060
20 200 0.055 0.064 0.054
40 20 0.062 0.069 0.063
40 40 0.070 0.061 0.062
40 60 0.055 0.063 0.057
40 80 0.052 0.068 0.047
40 100 0.052 0.054 0.056
40 200 0.060 0.059 0.046
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Table: 2 The size results on T, ¢ based on 1000 replications

n T two-side Csr;,  Cosgr
60 20 0.051 0.045 0.051
60 40 0.048 0.051 0.048
60 60 0.047 0.050 0.047
60 80 0.055 0.057 0.056
60 100 0.050 0.043 0.055
60 200 0.053 0.050 0.057
80 20 0.062 0.052 0.064
80 40 0.059 0.047 0.051
80 60 0.051 0.051 0.057
80 80 0.054 0.059 0.048
80 100 0.047 0.058 0.047
80 200 0.054 0.044 0.055
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Table: 3 The size results on T}, ¢ based on 1000 replications

n T two-side Csr,  Cosr
100 20 0.058 0.048 0.050
100 40 0.057 0.061 0.042
100 60 0.035 0.046 0.044
100 80 0.051 0.058 0.044
100 100 0.051 0.040 0.054
100 200 0.053 0.059 0.039
200 20 0.048 0.040 0.059
200 40 0.058 0.055 0.045
200 60 0.046 0.043 0.048
200 80 0.046 0.050 0.044
200 100 0.055 0.048 0.057
200 200 0.066 0.046 0.063
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We also calculate the proportion of kgr = 1 with different values of the
prescribed upper bound k in (21). Tables 4-6 show that (21) also works
well, since the calculated proportion is approaching 1 as the dimension n
and T both increase.
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Table: 4 The proportion of kzr = 1 based on 1000 replications

n T k=5 k=10 k=15
20 20 0720 0.712 0.701
20 40 0.733 0.732 0.732
20 60 0.749 0.749 0.749
20 80 0.770 0.770 0.770
20 100 0.754 0.754  0.754
20 200 0.766 0.766  0.766
40 20 0.816 0.815 0.815
40 40 0.841 0.841 0.841
40 60 083 0.835 0.835
40 80 0835 0.835 0.835
40 100 0.824 0.824 0.824
40 200 0.838 0.838 0.838
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Table: 5 The proportion of kzr = 1 based on 1000 replications

n T k=5 k=10 k=15
60 20 0.874 0874 0.874
60 40 0.870 0.870 0.870
60 60 0902 0.902 0.902
60 80 0.897 0.897 0.897
60 100 0.877 0.877 0.877
60 200 0.897 0.897 0.897
80 20 0920 0.920 0.920
80 40 0933 0.933 0.933
80 60 0.909 0.909 0.909
80 80 0914 0914 00914
80 100 0.925 0.925 0.925
80 200 0914 0914 0914
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Table: 6 The proportion of kzr = 1 based on 1000 replications

n T k=5 k=10 k=15
100 20 0936 0936  0.936
100 40 0.950 0.950 0.950
100 60 0.931 0931 0931
100 80 0.93r 0937  0.937
100 100 0.946 0946  0.946
100 200 0.945 0945 0.945
200 20 0981 0981 0.981
200 40 00986 0.986 0.986
200 60 0.989 0.989 0.989
200 80 0986 0.986 0.986
200 100 0.988 0.988 0.988
200 200 0.982 0.982 0.982
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@ The Simulation about Proposition 4
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Simulations

Now we consider the single factor model:
yit = life + Voey. (25)

We use the same error term e;; as in Ahn and Horensten

(2013):e50 = 1/ st

i—1 h=min(i+J,n)
€it = peit—1 + €ir + Z Bent + Z Bént (26)
h=max(i—J,1) i+1

where ¢;; and [; are all drawn independently from N (0, 1). We also use the
most complicated setting of Ahn and Horensten (2013) which has both
serially and cross-sectionally correlated errors: p = 0.5, 8 = 0.2 and

J = max(10,n/20).
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Simulations

Since p < 1, we can find that the error term is stationary. If f; is also
stationary, y;; is stationary. Then it will be very different from the unit root
model and there are too many methods to test stationary and unit root.
So we focus on the case where f; is nonstationary. We set f; = f;_1 + ft
where f; is drawn independently from N (0, 1).

Then the power of T, based on 1000 replications, different 0, the critical
values of the two-sided test and different values of n and T, are reported
in Tables 7-9. The power results given in Tables demonstrate that the
proposed test works well numerically.
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Table: 7 The power results on T}, s based on 1000 replications and two-sided test

n T 6=3 6=1 6=1/3
20 20 0087 0232 0582
20 40 0.114 0380  0.725
20 60 0.147 0485  0.843
20 80 0.197 0.605  0.896
20 100 0.249 0.634  0.953
20 200 0455 0.868  0.995
40 20 0.116 0295  0.679
40 40 0.173 0474  0.848
40 60 0260 0637  0.946
40 80 0293 0715 00974
40 100 0389 0.768  0.980
40 200 0.620 00932  0.999
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Table: 8 The power results on T}, s based on 1000 replications and two-sided test

n T 6=3 6=1 6=1/3
60 20 0082 0289  0.710
60 40 0.122 0454  0.848
60 60 0.151 0554  0.925
60 80 0223 0.653  0.958
60 100 0282 0.764  0.979
60 200 0509 0.934  0.999
80 20 0077 0267  0.678
80 40 0.129 0448  0.854
80 60 0.170 0.544  0.939
80 80 0.206 0.687  0.961
80 100 0285 0.762  0.982
80 200 0537 0.925 1
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Table: 9 The power results on T}, s based on 1000 replications and two-sided test

n T 6=3 6=1 6=1/3
100 20 0.061 0.288  0.689
100 40 0.095 0.437  0.866
100 60 0.157 0.603  0.968
100 80 0.208 0.709  0.980
100 100 0.287 0.806  0.985
100 200 0.599 0.969 1
200 20 0041 0238 0674
200 40 0085 0492  0.894
200 60 0.192 0680  0.978
200 80 0327 0794  0.995
200 100 0.442 0.883  0.999
200 200 0.761 0.991 1
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Thank You Very Much !
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