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The model

yit = `i1f1t + `i2f2t + εit = `∗i f t + εit, i = 1, 2, . . . , n; t = 1, 2, . . . , T, (1)

where ft = (f1t, f2t)
∗ are two common factors, `i = (`i1, `i2)∗ are the

corresponding factor loadings, and εit is the error component, in which the
symbol “∗” denotes the conventional conjugate transpose.
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Scenario : No true common factors

Under this case, the factor loadings are generated as `i = (0, 0)∗. When
the original data follow AR(1) model (γ = 0.2), Figures 1 and 2 provide all
eigenvalues of the sample covariance matrix as (T, n) = (20, 40) and
(T, n) = (40, 20), respectively. There are no spiked eigenvalues in view of
these graphs, which correctly reflect the fact that there are no common
factors in the original data.
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Figures

Figure: 1 T = 20, n = 40, γ = 0.2
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Figures

Figure: 2 T = 40, n = 20, γ = 0.2

Guangming Pan, (USTC) Spiked Eigenvalues of High Dimensional Separable Sample Covariance MatricesNovember 19, 2019 7 / 75



Figures

Figure: 3 T = 20, n = 40, γ = 1
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Figures

Figure: 4 T = 40, n = 20, γ = 1
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Scenario : No true common factors

However, as the data observations are nonstationary (γ = 1), Figures 3
and 4 show that there is one spiked eigenvalue from the sample covariance
matrix, while the true number of common factors is 0.
This example demonstrates that PCA may not be informative accurately
on high dimensional data with dependent sample observations.
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High Dimensional Separable Covariance Model

Consider an n-dimensional random vector y with observations
y1,y2, . . . ,yT . Pool all observations together into a T × n matrix
Y = (y1,y2, . . . ,yT )∗. The data matrix Y has the structure

Y = ΓXΩ1/2, (2)

where X = (x1, ...,xn) = (xij)(T+L)×n is a (T + L)× n random matrix
with i.i.d. elements; Σ = ΓΓ∗ and Ω are T × T and n× n deterministic
non-negative definite matrices, respectively. Here Γ is a T × (T + L)
deterministic matrix.
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Separable covariance matrix

Actually the matrix Γ describes dependence among sample
observations.

The matrix Ω measures cross-sectional dependence for y under study.

Under this setting, the sample covariance matrix of y can be
expressed as ΓXΩX∗Γ∗. It is also called separable covariance matrix.
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Largest spiked eigenvalues

We are interested in the largest spiked eigenvalues of matrix Ω, which
describes the cross-sectional dependence.

In the classical procedure of using PCA, spiked empirical eigenvalues
from sample covariance matrix ΓXΩX∗Γ∗ are utilized to
approximate those of the matrix Ω.

In this paper, we investigate the spiked empirical eigenvalues from an
innovative view: how the the spiked eigenvalues of the matrix Σ (due
to the dependent sample) affect the spiked sample eigenvalues ?

To this end, we do not impose any spiked structures on the matrix Ω.
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spikiness of the matrix Σ

We assume spikiness of the matrix Σ through the following
decomposition. Let the spectral decomposition of Γ be VΛ1/2U, where V
and U are T × T and T × (T + L) orthogonal matrices respectively
(VV∗ = UU∗ = I), Λ is a diagonal matrix composed by the descent

ordered eigenvalues of Σ = ΓΓ∗. Moreover, we write Λ =

(
ΛS 0
0 ΛP

)
,

where ΛS = diag(µ1, ..., µK), ΛP = diag(µK+1, ..., µT ), and µ1, ..., µK
are referred to the spiked eigenvalues that are significantly bigger than the

rest. In addition, we write U =

(
U1

U2

)
and Σ2 = U∗2ΛPU2.
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Asymptotic Performance of Largest Eigenvalues

This section is to establish the asymptotic distribution of the largest spiked
empirical eigenvalues. First, we make the following assumptions.

Assumption (Moment Conditions)

{xij : i = 1, ..., T + L, j = 1, ..., n} are i.i.d random variables such that
Exij = 0. E|

√
nxij |2 = 1 and E|

√
nxij |4 = γ4 <∞.
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Assumption 2

Assumption (Dependent Sample Structure)

αL = µK = ... = µK−nL < αL−1 = µK−nL+1... < α1 = µn1 = ... = µ1,
where n1,..., nL are finite. Moreover, there exists a small constant c > 0
such that αi−1 − αi ≥ cαi for i = 1, 2, ...,L and µK − µK+1 ≥ cµK .
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Assumption 3

Assumption (Cross-sectional Structure)

The matrix Ω is nonnegative definite and its effective rank
r∗(Ω) = tr(Ω)

‖Ω‖2 →∞, where ‖Ω‖2 means the spectral norm.
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Assumption 4

Assumption (Spiked Dependent Sample Structure)

The spiked eigenvalues of the population covariance matrix are much
bigger than the rest of the eigenvalues. Precisely speaking, for ∀ε > 0,
there is Kε, independent of n and T , such that when n and T are big
enough, ∑T

i=Kε
µi

µK
<
ε

2
. (3)
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Remarks about Assumptions

Note that Assumptions 2 and 4 impose a spiked structure on Σ while
Assumption 3 could endure either spiked or non-spiked structure on Ω.
This is consistent with the aim of this paper to investigate the effect
caused by dependent sample observations on the spiked sample
eigenvalues.
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Remarks about Assumptions

When µi = i−1−σ and σ > 0 one can find that Assumption 4 holds.
Moreover, Section 4.2 below shows that Assumption 4 holds in the unit
root setting. In addition, define a near unit root model of the form:

yit = ρyi,t−1 +

L∑
h=0

bhzi,t−h, (4)

where T (1− ρ) is bounded as T goes to infinity. It can also be verified
that Assumption 4 holds in such models. Also, heterogeneous
high–dimensional time series models can also be covered if the
corresponding variances satisfy Assumption 4.
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the asymptotic joint distribution of the largest
spiked eigenvalues

Denote the i-th largest sample eigenvalue of ΓXΩX∗Γ∗ by λi. Set
mi =

∑i−1
j=1 nj , for all i = 1, 2, ...,L. The following theorem establishes

the asymptotic joint distribution of the largest spiked eigenvalues.
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the asymptotic joint distribution of the largest
spiked eigenvalues

Theorem

Suppose that Assumptions 1-4 hold,

n

µi
√
tr(Ω2)

(
λmi+1 − µi

trΩ

n
, λmi+2 − µi

trΩ

n
, ..., λmi+ni − µi

trΩ

n

)
d→ Ri, (5)

where Ri are the eigenvalues of an ni × ni matrix Ri with the Gaussian
elements, ERi = 0, the covariance of the (Ri)k1,l1 and (Ri)k2,l2 is

lim
n→∞

n2

tr(Ω2)
× Cov(u∗mi+k1XΩX∗umi+l1 ,u

∗
mi+k2

XΩX∗umi+l2).(6)

Here the limit of (6) is bounded.
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the asymptotic joint distribution of the largest
spiked eigenvalues

Theorem

Moreover, if µi
µj
≥ c > 1, λmi+f and λmj+g are asymptotically

independent, where 1 ≤ f ≤ ni and 1 ≤ g ≤ nj . Particularly when ni = 1
for all i = 1, . . . ,K we have

(
λ1 − µ1

trΩ
n

µ1

√
var(u∗1XΩX∗u1)

,
λ2 − µ2

trΩ
n

µ2

√
var(u∗2XΩX∗u2)

, . . . ,

λK − µK trΩ
n

µK
√
var(u∗KXΩX∗uK)

)
d→ N(0, IK).
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Remarks about the Theorem

Note that √
tr(Ω)

‖Ω‖2
=

tr(Ω)√
‖Ω‖2tr(Ω)

≤ tr(Ω)√
tr(Ω2)

≤ tr(Ω)

‖Ω‖2
. (7)

From this and Assumption 3, we can find that the standard deviation of λi
has the smaller order than the mean of λi. So the sample eigenvalues
{λi, i ≤ K} have the same order as µi

trΩ
n .
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Remarks about the Theorem

It indicates that the sample eigenvalues λ1, · · · , λK are spiked under this
case no matter whether Ω has spiked eigenvalues or not. This
phenomenon suggests that PCA may reflect inaccurate information of the
cross-sectional structure Ω due to the dependent sample observations.
This is in contrast to the results Baik and Silverstein (2006) for the
independent sample observations which establish one to one
correspondence between the sample spiked eigenvalues and the population
spiked eigenvalues due to the cross-sectional structure Ω.
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Two Propositions

The following two propositions further investigate the relations between
the leading sample eigenvalues and the eigenvalues of Σ due to the
dependent sample observations.

Proposition

Under the conditions of Theorem 2, there exists a positive constant c such
that lim infT→∞

µ1
tr(ΓΓ∗) > c and

lim
n,T→∞

P

(
λ1

tr(ΓXΩX∗Γ∗)
> c

)
= 1. (8)

Moreover, when 1 ≤ i < K,

λi
λi+1

− µi
µi+1

→ 0 in probability as n, T →∞. (9)
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Two Propositions

Proposition

Let the conditions of Theorem 2 hold. For 1 ≤ i < K − 1, if

min
{

µi
µi+1

, µi+1

µi+2

}
≥ c > 1, then

λi
µi
−λi+1
µi+1

λi+2
µi+2

−λi+1
µi+1

=
λi
µi+1
µi
−λi+1

λi+2
µi+1
µi+2

−λi+1
has the same

asymptotic distribution as v1−v2
v3−v2 , where {vi : 1 ≤ i ≤ 3} are i.i.d standard

normal random variables.
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Remark about Propositions

Remark

Proposition 1 shows that the ratio of the neighboring spiked empirical
eigenvalues approximate that of the spiked eigenvalues from the dependent
sample structure. A central limit theorem is provided for the ratio statistic
constructed from the spiked empirical eigenvalues in Proposition 2.
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Implementing Factor Analysis on Our Model

Proposition 1 implies that the largest sample eigenvalue has the same
order as the sum of all eigenvalues.

The largest eigenvalue is so large that the methods in
Ahn and Horensten (2013) and Bai (2004) would both estimate the
number of factors to be the one bigger than zero even though there is
no factor in our model.

Similarly, the relation between λi and λi+1 leads to that Onatski
(2010) would estimate the number of factors to be the one bigger
than zero even though there is no factor in our model. We examine
this one by one below.
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The method in Onatski (2010)

The method in Onatski (2010) is based on the difference between the
i–th largest eigenvalue and the i+ 1–th one. In a few words, the idea
of Onatski (2010) is that if there is no factor, for any i ≥ 1, the
difference between the i–th largest eigenvalue and the i+ 1–th one
should be very small.

Recalling (9), we can find that the difference between the i-th largest
eigenvalue and the i+ 1th one in our model can be large when
µi
µi+1

> 1.

In other words, the method in Onatski (2010) would get a non-zero
estimate for the number of factors in our model when µi

µi+1
> 1.
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The method in Ahn and Horensten (2013)

The method in Ahn and Horensten (2013) is based on the ratio
between two successive largest eigenvalues. It defines a mock

eigenvalue λ0 =
∑min{n,T}
i=1 λi

ln(min{n,T}) . Then the estimator is

k̃ER = max
0≤k≤kmax

λk
λk+1

. (10)

Note that λ0 has a smaller order than the trace of the sample
covariance matrix. Then the method of Ahn and Horensten (2013)
implies that if there is no factor, the largest eigenvalue should have a
smaller order than the trace of the sample covariance matrix.

(8) shows that the largest eigenvalue in our model has the same order
as the trace of the sample covariance matrix.

In other words, the method in Ahn and Horensten (2013) would get a
non-zero estimate for the number of factors in our model.
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The method in Bai (2004)

The methods in Bai (2004) is based on penalty functions. Briefly
speaking, the idea of Bai (2004) is that if there is no factor, the
largest eigenvalue should be smaller than the penalty function. The
criterion has the form:

PC(k) = min
Λ

1

nT

n∑
i=1

T∑
t=1

(Xit − λk
′
i F̂

k
t )2 + kg(n, T ), (11)

where g(n, T ) satisfies some properties in Bai (2004).

However, we can find that all the penalty functions have a smaller
order than the trace of the sample covariance matrix.

Recalling (8), the methods in Bai (2004) would get a non-zero
estimate for the number of factors in our model.
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The unit root model

yit = yi,t−1 +

L∑
h=0

bhzi,t−h, (12)

where 1 ≤ i ≤ n, 1 ≤ t ≤ T and L can be finite or infinite. Here

zit =

n∑
s=1

Υisxst, (13)

where 1 ≤ i ≤ n and 1− L ≤ t ≤ T .
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The unit root model

Let Y = (yit) be an n× T matrix and Ȳ be an n× T matrix with all

entries of the ith row being
∑T
t=1 yit
T . We next specify some conditions so

that Theorem 2 can be applied to the sample covariance matrix:
(Y − Ȳ)∗(Y − Ȳ).
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Assumption 5

Assumption (Moment Conditions)

{xit: i = 1, ..., n, t = 1− L, ..., T} are independent random variables such
that Exit = 0. E|

√
nxit|2 = 1 and E|

√
nxit|4 = γ4 <∞. Write

X = (x1, ...,xn).
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Assumption 6

Assumption (Cross-sectional Structure)

Ω = Υ∗Υ satisfies Assumption 3 with the n× n matrix Υ = (Υis).
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Assumption 7

Assumption (Serial Correlation)

The coefficients {bi}Li=0 in (12) satisfy
∑L

i=0 i|bi| <∞ and
∑L

i=0 bi 6= 0.
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The form of the unit root

Write H = I− 11∗

T , where the T × 1 vector 1 consists of all one. Let
Γ = HCW and µ1 ≥ µ2 ≥ ... ≥ µT be the ordered eigenvalues of ΓΓ∗.
With a simple calculation, the sample covariance matrix can be expressed
as

(Y − Ȳ)∗(Y − Ȳ) = HY∗YH∗ = ΓXΩX∗Γ∗. (14)
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Theorem of the unit root

Theorem

Let Assumptions 5-7 hold. Denoting the k-th largest eigenvalue of (14) by
λk, for any fixed k, we have

n√
2tr(Ω2)

(
λ1 − µ1

trΩ
n

µ1
,
λ2 − µ2

trΩ
n

µ2
, ...,

λk − µk trΩn
µk

)
d→ N(0, Ik). (15)

Propositions 1-2 hold as well for model (12).
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Two models

We below focus on a nonstationary factor model of the form:

M1 : yit = `∗i ft + uit, (16)

where ft is a r-dimensional(r is fixed) vector, uit is a stationary term and
{ft}t=1,··· ,T are independent of {uit}i=1,··· ,n,t=1,··· ,T .
We then recall the unit root model discussed in Theorem 3 as follows:

M2 : yit = yi,t−1 +

L∑
h=0

bhzi,t−h (17)

for 1 ≤ i ≤ n and 1 ≤ t ≤ T , where L can be finite or infinite,
zit =

∑n
s=1 Υisxst and Assumptions 5-7 hold.
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some remarks

Note that Model M1 is equivalent to the following form:

M3 : yit = yi,t−1 + `∗i (ft − ft−1) + uit − ui,t−1 , yi,t−1 + vit, (18)

which seems to be similar to model M2. However M3 is different from M2
in two aspects.

At first, if ft − ft−1 6= 0, `∗i (ft − ft−1) could lead to a strong
cross-sectional dependence (strong factor) such that Assumption 6 is
violated.

Furthermore, even if ft − ft−1 = 0, then vit = uit − ui,t−1 doesn’t

necessarily satisfy
∑L

i=0 bi 6= 0 in Assumption 7.

Here one should note that (
∑L

i=0 bi)
2 contributes to the limit of the

first few largest eigenvalues of the corresponding sample covariance
matrix.
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Differences between M1 and M2

As a result, the eigenvalues of these two models behavior differently.

When the number of factors in M1 is r, there is a significant drop
from the r-th largest eigenvalue of M1 to its (r + 1)-th largest
eigenvalue.

In contrast the ratio of the i-th largest eigenvalue of M2 to its
(i+ 1)-th largest eigenvalue is asymptotically equal to (i+ 1)2/i2 so
that there is no significant drop between them.
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The new test statistics

We below propose a new statistic for M1 and M2. Define

µ̄i =
1

2
(

1 + cos
(

(T−i)π
T

)) (19)

and

Tuf =
λ1

µ̄2
µ̄1
− λ2

λ2 − λ3
µ̄2
µ̄3

. (20)

Guangming Pan, (USTC) Spiked Eigenvalues of High Dimensional Separable Sample Covariance MatricesNovember 19, 2019 49 / 75



The new test statistics

Proposition

Under the conditions of Theorem 3, for any fixed k,

lim
n,T→∞

P

(
k̃ER = max

0≤i≤k

{
λi
λi+1

}
= 1

)
= 1. (21)

Furthermore, when

lim
n,T→∞

tr(Ω)

T
√

tr(Ω2)
= 0, (22)

the statistic Tuf has the same asymptotic distribution as v1−v2
v2−v3 , where

{vi : 1 ≤ i ≤ 3} are i.i.d standard normal variables.
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The new test statistics

Remark

Note that tr(Ω)√
tr(Ω2)

≤
√
n. So when

√
n
T → 0, (22) holds.

Equation (21) implies that using k̃ER in Ahn and Horensten (2013) may
mistakenly think a unit root model as a single factor model.
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The new test statistics

However using the statistic Tuf could distinguish between them because
for single factor models (see Assumption 1 in Onatski (2010), Assumptions
A and B in Bai (2004) and Assumption A in Ahn and Horensten (2013)),

λ1

λ2
→∞ in probability as n, T →∞. (23)

This ensures the power of the statistic Tuf specified below.

Proposition

In single factor models(under the assumptions of Onatski (2010), Bai
(2004) or Ahn and Horensten (2013)), the following holds

Tuf →∞ in probability as n, T →∞. (24)
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four kinds of panel data structures

We have more thoughts about distinguishing four kinds of panel data
structures:

(1) stationary and weak cross-sectional dependence;

(2) stationary and strong cross–sectional dependence;

(3) unit root and weak cross–sectional dependence;

(4) unit root and strong cross–sectional dependence.

Here by strong cross–sectional dependence we mean that its effective rank
r∗(Ω) = tr(Ω)

‖Ω‖2 → c > 0 while weak cross–sectional dependence implies

that its effective rank r∗(Ω)→ +∞.
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stationary and weak cross-sectional dependence

Theorem 2.3 of Zhang, Pan and Gao (2018) shows that when the
data belongs to the first kind, the largest eigenvalue of sample
covariance matrix has smaller order than the trace.

On the other hand, the largest eigenvalues from three other types of
data have the same order as the trace.

So we can distinguish the first type, stationary and weak
cross–sectional dependence, from others.
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the remaining three cases

For the remaining three cases, we consider using PCA for them.

Since PCA is a linear combination of data on the cross section we
believe it has the same time-dependence as the initial data.

In other words, from the first PC we may tell the difference between
the second type stationary structure and the remaining two
nonstationary structures since there are plenty of methods available
for the univariate variable.

So we can distinguish the second case from two others.

Finally, we can use Tuf to distinguish the third case from the fourth
case.
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the critical value

At first we compute the critical value by simulating v1−v2
v2−v3 where

{vi : 1 ≤ i ≤ 3} are i.i.d standard Gaussian random variables based on
500000 replications. The quantiles of v1−v2

v2−v3 are reported in Table 1.

Table: The quantiles of v1−v2
v2−v3

based on 500000 replications

2.5% quantile 5% quantile 95% quantile 97.5% quantile

-11.6549 -6.0392 4.9932 10.4598

Then we can use a two-tailed test with the critical values -11.6549 and
10.4598. We can also use one-side test with the critical values
C5L = −6.0392 or C95R = 4.9932.
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the setting and the size

We consider the following setting:

yit = yi,t−1 + ψzi,t−1 + zit,

where ψ = 0.5 and Ω =
(

Ωi,j

)
=
(

0.3|i−j|
)

. The estimated sizes for the

test statistic Tuf based on 1000 replications, different critical values and
different values of n and T are reported in Tables 1-3. Tables 1-3 show
that Tuf has stable sizes with different critical values. We can choose
-11.6549 and 10.4598 as the critical values of a two-tailed test.
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the size

Table: 1 The size results on Tuf based on 1000 replications

n T two-side C5L C95R

20 20 0.069 0.064 0.052
20 40 0.065 0.068 0.051
20 60 0.067 0.059 0.055
20 80 0.074 0.062 0.063
20 100 0.064 0.060 0.060
20 200 0.055 0.064 0.054
40 20 0.062 0.069 0.063
40 40 0.070 0.061 0.062
40 60 0.055 0.063 0.057
40 80 0.052 0.068 0.047
40 100 0.052 0.054 0.056
40 200 0.060 0.059 0.046
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the size

Table: 2 The size results on Tuf based on 1000 replications

n T two-side C5L C95R

60 20 0.051 0.045 0.051
60 40 0.048 0.051 0.048
60 60 0.047 0.050 0.047
60 80 0.055 0.057 0.056
60 100 0.050 0.043 0.055
60 200 0.053 0.050 0.057
80 20 0.062 0.052 0.064
80 40 0.059 0.047 0.051
80 60 0.051 0.051 0.057
80 80 0.054 0.059 0.048
80 100 0.047 0.058 0.047
80 200 0.054 0.044 0.055
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the size

Table: 3 The size results on Tuf based on 1000 replications

n T two-side C5L C95R

100 20 0.058 0.048 0.050
100 40 0.057 0.061 0.042
100 60 0.035 0.046 0.044
100 80 0.051 0.058 0.044
100 100 0.051 0.040 0.054
100 200 0.053 0.059 0.039
200 20 0.048 0.040 0.059
200 40 0.058 0.055 0.045
200 60 0.046 0.043 0.048
200 80 0.046 0.050 0.044
200 100 0.055 0.048 0.057
200 200 0.066 0.046 0.063
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k̃ER

We also calculate the proportion of k̃ER = 1 with different values of the
prescribed upper bound k in (21). Tables 4-6 show that (21) also works
well, since the calculated proportion is approaching 1 as the dimension n
and T both increase.
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k̃ER

Table: 4 The proportion of k̃ER = 1 based on 1000 replications

n T k = 5 k = 10 k = 15

20 20 0.720 0.712 0.701
20 40 0.733 0.732 0.732
20 60 0.749 0.749 0.749
20 80 0.770 0.770 0.770
20 100 0.754 0.754 0.754
20 200 0.766 0.766 0.766
40 20 0.816 0.815 0.815
40 40 0.841 0.841 0.841
40 60 0.835 0.835 0.835
40 80 0.835 0.835 0.835
40 100 0.824 0.824 0.824
40 200 0.838 0.838 0.838

Guangming Pan, (USTC) Spiked Eigenvalues of High Dimensional Separable Sample Covariance MatricesNovember 19, 2019 65 / 75



k̃ER

Table: 5 The proportion of k̃ER = 1 based on 1000 replications

n T k = 5 k = 10 k = 15

60 20 0.874 0.874 0.874
60 40 0.870 0.870 0.870
60 60 0.902 0.902 0.902
60 80 0.897 0.897 0.897
60 100 0.877 0.877 0.877
60 200 0.897 0.897 0.897
80 20 0.920 0.920 0.920
80 40 0.933 0.933 0.933
80 60 0.909 0.909 0.909
80 80 0.914 0.914 0.914
80 100 0.925 0.925 0.925
80 200 0.914 0.914 0.914
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k̃ER

Table: 6 The proportion of k̃ER = 1 based on 1000 replications

n T k = 5 k = 10 k = 15

100 20 0.936 0.936 0.936
100 40 0.950 0.950 0.950
100 60 0.931 0.931 0.931
100 80 0.937 0.937 0.937
100 100 0.946 0.946 0.946
100 200 0.945 0.945 0.945
200 20 0.981 0.981 0.981
200 40 0.986 0.986 0.986
200 60 0.989 0.989 0.989
200 80 0.986 0.986 0.986
200 100 0.988 0.988 0.988
200 200 0.982 0.982 0.982
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Simulations

Now we consider the single factor model:

yit = lift +
√
θeit. (25)

We use the same error term eit as in Ahn and Horensten

(2013):eit =
√

1−ρ2
1+2Jβ ẽit

ẽit = ρẽi,t−1 + εit +

i−1∑
h=max(i−J,1)

βεht +

h=min(i+J,n)∑
i+1

βεht, (26)

where εit and li are all drawn independently from N(0, 1). We also use the
most complicated setting of Ahn and Horensten (2013) which has both
serially and cross-sectionally correlated errors: ρ = 0.5, β = 0.2 and
J = max(10, n/20).
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Simulations

Since ρ < 1, we can find that the error term is stationary. If ft is also
stationary, yit is stationary. Then it will be very different from the unit root
model and there are too many methods to test stationary and unit root.
So we focus on the case where ft is nonstationary. We set ft = ft−1 + f̃t,
where f̃t is drawn independently from N(0, 1).
Then the power of Tuf based on 1000 replications, different θ, the critical
values of the two-sided test and different values of n and T , are reported
in Tables 7-9. The power results given in Tables demonstrate that the
proposed test works well numerically.
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The power

Table: 7 The power results on Tuf based on 1000 replications and two-sided test

n T θ = 3 θ = 1 θ = 1/3

20 20 0.087 0.232 0.582
20 40 0.114 0.380 0.725
20 60 0.147 0.485 0.843
20 80 0.197 0.605 0.896
20 100 0.249 0.634 0.953
20 200 0.455 0.868 0.995
40 20 0.116 0.295 0.679
40 40 0.173 0.474 0.848
40 60 0.260 0.637 0.946
40 80 0.293 0.715 0.974
40 100 0.389 0.768 0.980
40 200 0.620 0.932 0.999
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The power

Table: 8 The power results on Tuf based on 1000 replications and two-sided test

n T θ = 3 θ = 1 θ = 1/3

60 20 0.082 0.289 0.710
60 40 0.122 0.454 0.848
60 60 0.151 0.554 0.925
60 80 0.223 0.653 0.958
60 100 0.282 0.764 0.979
60 200 0.509 0.934 0.999
80 20 0.077 0.267 0.678
80 40 0.129 0.448 0.854
80 60 0.170 0.544 0.939
80 80 0.206 0.687 0.961
80 100 0.285 0.762 0.982
80 200 0.537 0.925 1
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The power

Table: 9 The power results on Tuf based on 1000 replications and two-sided test

n T θ = 3 θ = 1 θ = 1/3

100 20 0.061 0.288 0.689
100 40 0.095 0.437 0.866
100 60 0.157 0.603 0.968
100 80 0.208 0.709 0.980
100 100 0.287 0.806 0.985
100 200 0.599 0.969 1
200 20 0.041 0.238 0.674
200 40 0.085 0.492 0.894
200 60 0.192 0.680 0.978
200 80 0.327 0.794 0.995
200 100 0.442 0.883 0.999
200 200 0.761 0.991 1
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Thank You Very Much !
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