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An illustrative example: principal components for genetics

1000G genetics data: n = 2318 individuals, p = 115019 SNPs

Rounak Dey

Xihong Lin

PC’s can reveal population (and sub-population) structure,
but how many are meaningful?
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An illustrative example: principal components for genetics

Often, we look at the scree plot and the spectrum:

Question: how can we make principled selections
and reason about them?

The spectrum looks like a spiked covariance model...
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Rank selection for PCA

Rank selection is important – it affects every downstream step!

I too many: add noise to downstream analyses

I too few: lose signals that were in the data

Many excellent and practical methods:

I Likelihood ratio test
(Bartlett 1950)

I Fixed threshold (Kaiser 1960)

I Scree plot (Cattell 1966)

I 4/
√

3 (Gavish & Donoho 2014)

I bi-cross-validation
(Owen & Wang 2016)

I ...

Today’s talk: parallel analysis (Horn, 1965; Buja & Eyuboglu 1992)

PA is a popular method with extensive empirical evidence,
but limited theoretical understanding – exciting area for work!
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Parallel analysis for rank selection

Parallel analysis is suggested in many reviews:

I Brown (2014): PA “is accurate in the vast majority of cases”

I Hayton et al. (2004): PA is “one of the most accurate factor
retention methods” used in social science and management

I Costello and Osborne (2005): PA is “accurate and easy to use”

I Friedman et al. (2009): defaults to PA for rank selection

Also gaining popularity in applied statistics (esp. biological sciences):

I Leek and Storey (2007)

I Leek and Storey (2008)

I Lin et al. (2016)

I Gerard and Stephens (2017)

I Zhou et al. (2017)

I ...

But there remains limited theoretical understanding:
PA is “at best a heuristic approach rather than a
mathematically rigorous one” – Green et al. (2012)
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Parallel analysis for rank selection

Given: data matrix X ∈ Rn×p and percentile α ∈ [0, 1]

1. Generate Xπ by randomly permuting the entries in each column

X

Xπ
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Parallel analysis for rank selection

Given: data matrix X ∈ Rn×p and percentile α ∈ [0, 1]

1. Generate Xπ by randomly permuting the entries in each column

2. Repeat several times

3. Select the kth component if the kth singular value of X exceeds
the α-percentile of the kth singular value of Xπ

One component rises above
the permuted version.
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Parallel analysis for rank selection

Given: data matrix X ∈ Rn×p and percentile α ∈ [0, 1]

1. Generate Xπ by randomly permuting the entries in each column

2. Repeat several times

3. Select the kth component if the kth singular value of X exceeds
the α-percentile of the kth singular value of Xπ

One component rises above
the permuted version.

Idea: recover “null” by destroying correlations between features.
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A quick sneak peak...

For a larger version of the same problem, i.e., bigger n, p:
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A quick sneak peak...

For a larger version of the same problem, i.e., bigger n, p:

Permutation provides a good estimate of the noise spectrum.
...let’s begin characterizing this a bit!
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Parallel analysis under factor models

Model: data is a linear combination of factors λjk with noise εij

Xij =
r∑

k=1

ηikλjk + εij ,

i.e., low-rank signal + noise

X = ηΛ> + E = S + E .
S

= +
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Parallel analysis under factor models

Key idea: permutation “destroys” the signal S but not the noise E

S ‖Sπ‖ � ‖S‖ E Eπ =d E

Consequence: PA estimates noise spectrum (i.e., noise floor)

σk(Xπ) = σk(Sπ + Eπ) ≈ σk(Eπ) =d σk(Eπ).

When does permutation successfully do this?
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Important aside: small factors can fall below the noise

Example: Three factors, but only two rise above the phase transition.

asymptotic
bulk spectrum
(‖E‖ → b > 0)

above noise
factors

below noise
factor

Perceptible factor: singular value σk > b + δ a.s. for some δ > 0
Imperceptible factors: singular value σk < b − δ a.s. for some δ > 0

Question: when does parallel analysis identify perceptible factors?
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Formalizing the intuition

Theorem. Suppose X = S + E with signal S = ηΛ> where

I η = UΨ1/2 for some Ψ where U ∈ Rn×r has ind. stand. entries;

I ΛΨ1/2 = (f1, . . . , fr ) has bounded and delocalized columns,
i.e., ‖fk‖2 ≤ Cn1/4−δ/2 and ‖fk‖4/‖fk‖2 → 0;

and with noise E = ZΦ1/2 where Φ = diag(φ) is diagonal,

I Z ∈ Rn×p has ind. stand. entries with bounded fourth moment;

I entries of Z have bounded (6 + ∆)th moments;

I p−1
∑

j δφj ⇒ H and maxj φj → U(H) as n, p →∞ with p/n→ γ > 0.

Then PA selects all perceptible and no imperceptible factors with prob → 1.

Key: Provide conditions so that
a) ‖N‖ → b > 0, b) Nπ =d N, c) ‖Sπ‖ → 0.

Involved deriving new moment bounds
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Numerical experiment

Setup: n = 500 samples with p = 300 features, r = 1 latent factor.

X = θ
√
γηΛ> + E ,

where η ∼ Unif(Sn−1), Λ ∼ Unif(Sp−1), and εij
iid∼ N (0, 1/n).

Comparing against σ1(Xπ) can help combat overselection.
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What if the noise is not invariant under permutation?

Example: εij
ind∼ N (0, ω2

i /n), 90% have ω2
i = 0.4, 10% have ω2

i = 1.

This heterogeneous data is less noisy, should be easier!
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Idea: Replace permutation with signflips → Signflip PA

Given: data matrix X ∈ Rn×p and percentile α ∈ [0, 1]

1. Generate Xπ by randomly sign-flipping all entries

X R ◦ X
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2. Repeat several times

3. Select the kth component if the kth singular value of X exceeds
the α-percentile of the kth singular value of Xπ

One component rises above
the signflipped version.
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1. Generate Xπ by randomly sign-flipping all entries

2. Repeat several times

3. Select the kth component if the kth singular value of X exceeds
the α-percentile of the kth singular value of Xπ
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Idea: Replace permutation with signflips → Signflip PA

For a larger version of the same problem, i.e., bigger n, p:

Signflip PA also provides a good estimate of the noise spectrum.
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Revisit: PA for the heterogeneous example

Recall: εij
ind∼ N (0, ω2

i /n), 90% have ω2
i = 0.4, 10% have ω2

i = 1.

Permutation shrinks the noise spectrum, leading to overselection.
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Revisit: Signflip PA for the heterogeneous example

Recall: εij
ind∼ N (0, ω2

i /n), 90% have ω2
i = 0.4, 10% have ω2

i = 1.

Signflips preserve the noise spectrum (in distribution).
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overselection of permutation.
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Application to single cell RNA sequencing

Work with: Thomas Zhang, George Linderman, Yuval Kluger (Yale)

Question: how to select rank for single-cell RNA sequencing data?

Challenge: data does not (readily) fit our signal + noise setups.

Model: n samples are drawn independently from a multinomial

xi
ind∼ Multinomial(si , ki ),

where S = (s1, . . . , sn)> is row-stochastic and low-rank.

Writing it in a signal + noise form

X = S + (X − S) = S + N,

where N = X − S is centered (since EX = S), but has dep. entries.

Ongoing work: how do our insights about PA apply here?
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Application to single cell RNA sequencing

Prelim experiment: rank-10 S matrix, diverse total count rates, ...

Permutations seem to shrink the noise spectrum sometimes
and signflips seem to preserve them...

Ongoing: theoretical analysis/characterization
– how to deal with the dependence among noise entries?
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Conclusions

Today:

I explaination for how parallel analysis works using insights/tools
from random matrix theory

I some theoretical guarantees/characterization for parallel analysis

I signflip variant to handle alternative noise models

I preliminary work on applications to scRNAseq

Ongoing:

I characterization/analysis of signflip parallel analysis

I characterization of behavior under multinomial models

I application of similar ideas to other models?

I more evaluation in real data

Thanks!
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