Understanding parallel analysis methods for rank selection in PCA

David Hong

Yue Sheng Edgar Dobriban

Wharton Statistics, University of Pennsylvania

Random Matrices and Complex Data Analysis Workshop 10 December 2019

This work was supported in part by NSF BIGDATA grant IIS 1837992 and NSF TRIPODS award 1934960.

1000G genetics data: n = 2318 individuals, p = 115019 SNPs

Rounak Dey

Xihong Lin

1000G genetics data: n = 2318 individuals, p = 115019 SNPs

Rounak Dey

Xihong Lin

PC's can reveal population (and sub-population) structure, but how many are meaningful?

Parallel analysis for rank selection in PCA

Often, we look at the scree plot and the spectrum:

Question: how can we make principled selections and reason about them?

Often, we look at the scree plot and the spectrum:

Question: how can we make principled selections and reason about them?

The spectrum looks like a spiked covariance model...

Parallel analysis for rank selection in PCA

Rank selection for PCA

Rank selection is important - it affects every downstream step!

- too many: add noise to downstream analyses
- too few: lose signals that were in the data

Many excellent and practical methods:

- Likelihood ratio test (Bartlett 1950)
- Fixed threshold (Kaiser 1960)
- Scree plot (Cattell 1966)

- $4/\sqrt{3}$ (Gavish & Donoho 2014)
- bi-cross-validation (Owen & Wang 2016)

. . .

Today's talk: parallel analysis (Horn, 1965; Buja & Eyuboglu 1992)

Rank selection for PCA

Rank selection is important - it affects every downstream step!

- too many: add noise to downstream analyses
- too few: lose signals that were in the data

Many excellent and practical methods:

- Likelihood ratio test (Bartlett 1950)
- Fixed threshold (Kaiser 1960)
- Scree plot (Cattell 1966)

- $4/\sqrt{3}$ (Gavish & Donoho 2014)
- bi-cross-validation (Owen & Wang 2016)

Today's talk: parallel analysis (Horn, 1965; Buja & Eyuboglu 1992)

PA is a popular method with extensive empirical evidence, but limited theoretical understanding – exciting area for work!

Parallel analysis is suggested in many reviews:

- Brown (2014): PA "is accurate in the vast majority of cases"
- Hayton et al. (2004): PA is "one of the most accurate factor retention methods" used in social science and management
- Costello and Osborne (2005): PA is "accurate and easy to use"
- Friedman et al. (2009): defaults to PA for rank selection

Parallel analysis is suggested in many reviews:

- Brown (2014): PA "is accurate in the vast majority of cases"
- Hayton et al. (2004): PA is "one of the most accurate factor retention methods" used in social science and management
- Costello and Osborne (2005): PA is "accurate and easy to use"
- Friedman et al. (2009): defaults to PA for rank selection

Also gaining popularity in applied statistics (esp. biological sciences):

- Leek and Storey (2007)
- Leek and Storey (2008)
- Lin et al. (2016)

- Gerard and Stephens (2017)
- Zhou et al. (2017)

▶ ...

Parallel analysis is suggested in many reviews:

- Brown (2014): PA "is accurate in the vast majority of cases"
- ► Hayton et al. (2004): PA is "one of the most accurate factor retention methods" used in social science and management
- Costello and Osborne (2005): PA is "accurate and easy to use"
- Friedman et al. (2009): defaults to PA for rank selection

Also gaining popularity in applied statistics (esp. biological sciences):

- Leek and Storey (2007)
- Leek and Storey (2008)
- Lin et al. (2016)

- ► Gerard and Stephens (2017)
- Zhou et al. (2017)

But there remains limited theoretical understanding: PA is "at best a heuristic approach rather than a mathematically rigorous one" – Green et al. (2012)

Given: data matrix $X \in \mathbb{R}^{n \times p}$ and percentile $\alpha \in [0, 1]$

1. Generate X_{π} by randomly permuting the entries in each column

Х

Given: data matrix $X \in \mathbb{R}^{n imes p}$ and percentile $\alpha \in [0, 1]$

Given: data matrix $X \in \mathbb{R}^{n imes p}$ and percentile $lpha \in [0,1]$

Given: data matrix $X \in \mathbb{R}^{n imes p}$ and percentile $lpha \in [0,1]$

Given: data matrix $X \in \mathbb{R}^{n imes p}$ and percentile $lpha \in [0,1]$

Given: data matrix $X \in \mathbb{R}^{n imes p}$ and percentile $\alpha \in [0, 1]$

Given: data matrix $X \in \mathbb{R}^{n imes p}$ and percentile $\alpha \in [0, 1]$

Given: data matrix $X \in \mathbb{R}^{n imes p}$ and percentile $\alpha \in [0, 1]$

Given: data matrix $X \in \mathbb{R}^{n imes p}$ and percentile $\alpha \in [0, 1]$

- 1. Generate X_{π} by randomly permuting the entries in each column
- 2. Repeat several times
- 3. Select the *k*th component if the *k*th singular value of X exceeds the α -percentile of the *k*th singular value of X_{π}

Given: data matrix $X \in \mathbb{R}^{n \times p}$ and percentile $\alpha \in [0, 1]$

- 1. Generate X_{π} by randomly permuting the entries in each column
- 2. Repeat several times
- 3. Select the *k*th component if the *k*th singular value of X exceeds the α -percentile of the *k*th singular value of X_{π}

Given: data matrix $X \in \mathbb{R}^{n \times p}$ and percentile $\alpha \in [0, 1]$

- 1. Generate X_{π} by randomly permuting the entries in each column
- 2. Repeat several times
- 3. Select the *k*th component if the *k*th singular value of X exceeds the α -percentile of the *k*th singular value of X_{π}

Idea: recover "null" by destroying correlations between features.

Parallel analysis for rank selection in PCA

A quick sneak peak...

For a larger version of the same problem, i.e., bigger n, p:

A quick sneak peak...

For a larger version of the same problem, i.e., bigger n, p:

Permutation provides a good estimate of the noise spectrum.

A quick sneak peak...

For a larger version of the same problem, i.e., bigger n, p:

Permutation provides a good estimate of the noise spectrum. ...let's begin characterizing this a bit!

Model: data is a linear combination of factors λ_{jk} with noise ε_{ij}

$$X_{ij} = \sum_{k=1}^{r} \eta_{ik} \lambda_{jk} + \varepsilon_{ij},$$

Model: data is a linear combination of factors λ_{ik} with noise ε_{ii}

$$X_{ij} = \sum_{k=1}^{r} \eta_{ik} \lambda_{jk} + \varepsilon_{ij},$$

i.e., low-rank signal + noise

$$X = \underline{\eta} \Lambda^{\top} + \mathcal{E} = S + \mathcal{E}.$$

Key idea: permutation "destroys" the signal S but not the noise $\mathcal E$

Key idea: permutation "destroys" the signal S but not the noise $\mathcal E$

Key idea: permutation "destroys" the signal S but not the noise \mathcal{E}

Key idea: permutation "destroys" the signal S but not the noise $\mathcal E$

Consequence: PA estimates noise spectrum (i.e., noise floor)

$$\sigma_k(X_{\pi}) = \sigma_k(S_{\pi} + \mathcal{E}_{\pi}) \approx \sigma_k(\mathcal{E}_{\pi}) =_d \sigma_k(\mathcal{E}_{\pi}).$$

Key idea: permutation "destroys" the signal S but not the noise $\mathcal E$

Consequence: PA estimates noise spectrum (i.e., noise floor)

$$\sigma_k(X_{\pi}) = \sigma_k(S_{\pi} + \mathcal{E}_{\pi}) \approx \sigma_k(\mathcal{E}_{\pi}) =_d \sigma_k(\mathcal{E}_{\pi}).$$

When does permutation successfully do this?

Parallel analysis for rank selection in PCA

Perceptible factor: singular value $\sigma_k > b + \delta$ a.s. for some $\delta > 0$ Imperceptible factors: singular value $\sigma_k < b - \delta$ a.s. for some $\delta > 0$
Important aside: small factors can fall below the noise

Example: Three factors, but only two rise above the phase transition.

Perceptible factor: singular value $\sigma_k > b + \delta$ a.s. for some $\delta > 0$ Imperceptible factors: singular value $\sigma_k < b - \delta$ a.s. for some $\delta > 0$

Question: when does parallel analysis identify perceptible factors?

Formalizing the intuition

Theorem. Suppose $X = S + \mathcal{E}$ with signal $S = \eta \Lambda^{\top}$ where

- ▶ $\eta = U\Psi^{1/2}$ for some Ψ where $U \in \mathbb{R}^{n \times r}$ has ind. stand. entries;
- $\Lambda \Psi^{1/2} = (f_1, \dots, f_r)$ has bounded and delocalized columns, i.e., $\|f_k\|_2 \leq C n^{1/4-\delta/2}$ and $\|f_k\|_4/\|f_k\|_2 \to 0$;

and with noise $\mathcal{E} = Z \Phi^{1/2}$ where $\Phi = \text{diag}(\phi)$ is diagonal,

- ▶ $Z \in \mathbb{R}^{n \times p}$ has ind. stand. entries with bounded fourth moment;
- entries of Z have bounded $(6 + \Delta)$ th moments;

▶ $p^{-1}\sum_{j} \delta_{\phi_j} \Rightarrow H$ and $\max_j \phi_j \to U(H)$ as $n, p \to \infty$ with $p/n \to \gamma > 0$.

Then PA selects all perceptible and no imperceptible factors with prob \rightarrow 1.

Formalizing the intuition

Theorem. Suppose $X = S + \mathcal{E}$ with signal $S = \eta \Lambda^{\top}$ where

- ▶ $\eta = U\Psi^{1/2}$ for some Ψ where $U \in \mathbb{R}^{n \times r}$ has ind. stand. entries;
- $\Lambda \Psi^{1/2} = (f_1, \dots, f_r)$ has bounded and delocalized columns, i.e., $\|f_k\|_2 \leq C n^{1/4-\delta/2}$ and $\|f_k\|_4/\|f_k\|_2 \to 0$;

and with noise $\mathcal{E} = Z \Phi^{1/2}$ where $\Phi = \text{diag}(\phi)$ is diagonal,

- ▶ $Z \in \mathbb{R}^{n \times p}$ has ind. stand. entries with bounded fourth moment;
- entries of Z have bounded $(6 + \Delta)$ th moments;

▶ $p^{-1}\sum_{j} \delta_{\phi_j} \Rightarrow H$ and $\max_j \phi_j \to U(H)$ as $n, p \to \infty$ with $p/n \to \gamma > 0$.

Then PA selects all perceptible and no imperceptible factors with prob \rightarrow 1.

$\begin{array}{ll} \mbox{Key: Provide conditions so that} \\ \mbox{a) } \| {\it N} \| \rightarrow b > 0, \quad \mbox{b) } {\it N}_{\pi} =_d {\it N}, \quad \mbox{c) } \| {\it S}_{\pi} \| \rightarrow 0. \end{array}$

Formalizing the intuition

Theorem. Suppose $X = S + \mathcal{E}$ with signal $S = \eta \Lambda^{\top}$ where

- ▶ $\eta = U\Psi^{1/2}$ for some Ψ where $U \in \mathbb{R}^{n \times r}$ has ind. stand. entries;
- $\Lambda \Psi^{1/2} = (f_1, \dots, f_r)$ has bounded and delocalized columns, i.e., $\|f_k\|_2 \leq C n^{1/4-\delta/2}$ and $\|f_k\|_4/\|f_k\|_2 \to 0$;

and with noise $\mathcal{E} = Z \Phi^{1/2}$ where $\Phi = \text{diag}(\phi)$ is diagonal,

- ▶ $Z \in \mathbb{R}^{n \times p}$ has ind. stand. entries with bounded fourth moment;
- entries of Z have bounded $(6 + \Delta)$ th moments;

▶
$$p^{-1}\sum_{j} \delta_{\phi_j} \Rightarrow H$$
 and $\max_j \phi_j \to U(H)$ as $n, p \to \infty$ with $p/n \to \gamma > 0$.

Then PA selects all perceptible and no imperceptible factors with prob \rightarrow 1.

Key: Provide conditions so that
a)
$$||N|| \rightarrow b > 0$$
, b) $N_{\pi} =_d N$, c) $||S_{\pi}|| \rightarrow 0$.

Involved deriving new moment bounds

Numerical experiment

Setup: n = 500 samples with p = 300 features, r = 1 latent factor.

$$\boldsymbol{X} = \boldsymbol{\theta} \sqrt{\gamma} \boldsymbol{\eta} \boldsymbol{\Lambda}^{\top} + \boldsymbol{\mathcal{E}},$$

where $\eta \sim \text{Unif}(\mathbb{S}^{n-1})$, $\Lambda \sim \text{Unif}(\mathbb{S}^{p-1})$, and $\varepsilon_{ij} \stackrel{iid}{\sim} \mathcal{N}(0, 1/n)$.

Numerical experiment

Setup: n = 500 samples with p = 300 features, r = 1 latent factor.

$$\boldsymbol{X} = \boldsymbol{\theta} \sqrt{\gamma} \boldsymbol{\eta} \boldsymbol{\Lambda}^{\top} + \boldsymbol{\mathcal{E}},$$

where $\eta \sim \text{Unif}(\mathbb{S}^{n-1})$, $\Lambda \sim \text{Unif}(\mathbb{S}^{p-1})$, and $\varepsilon_{ij} \stackrel{iid}{\sim} \mathcal{N}(0, 1/n)$.

Comparing against $\sigma_1(X_{\pi})$ can help combat overselection.

Parallel analysis for rank selection in PCA

Numerical experiment

Setup: n = 500 samples with p = 300 features, r = 1 latent factor.

$$X = \theta \sqrt{\gamma} \eta \Lambda^{\top} + \mathcal{E},$$

where $\eta \sim \text{Unif}(\mathbb{S}^{n-1})$, $\Lambda \sim \text{Unif}(\mathbb{S}^{p-1})$, and $\varepsilon_{ij} \stackrel{iid}{\sim} \mathcal{N}(0, 1/n)$.

Comparing against $\sigma_1(X_{\pi})$ can help combat overselection.

Parallel analysis for rank selection in PCA

Example: $\varepsilon_{ij} \stackrel{ind}{\sim} \mathcal{N}(0, \omega_i^2/n)$, 90% have $\omega_i^2 = 0.4$, 10% have $\omega_i^2 = 1$.

This heterogeneous data is less noisy, should be easier!

But it performs much worse ...

But it performs <u>much</u> worse...what is happening?

Example: $\varepsilon_{ij} \stackrel{ind}{\sim} \mathcal{N}(0, \omega_i^2/n)$, 90% have $\omega_i^2 = 0.4$, 10% have $\omega_i^2 = 1$.

Permutation shrinks the noise spectrum, leading to overselection.

Given: data matrix $X \in \mathbb{R}^{n imes p}$ and percentile $\alpha \in [0, 1]$

1. Generate X_{π} by randomly sign-flipping all entries

Given: data matrix $X \in \mathbb{R}^{n \times p}$ and percentile $\alpha \in [0, 1]$

- 1. Generate X_{π} by randomly sign-flipping all entries
- 2. Repeat several times
- 3. Select the *k*th component if the *k*th singular value of X exceeds the α -percentile of the *k*th singular value of X_{π}

Given: data matrix $X \in \mathbb{R}^{n \times p}$ and percentile $\alpha \in [0, 1]$

- 1. Generate X_{π} by randomly sign-flipping all entries
- 2. Repeat several times
- 3. Select the *k*th component if the *k*th singular value of X exceeds the α -percentile of the *k*th singular value of X_{π}

Given: data matrix $X \in \mathbb{R}^{n \times p}$ and percentile $\alpha \in [0, 1]$

- 1. Generate X_{π} by randomly sign-flipping all entries
- 2. Repeat several times
- 3. Select the *k*th component if the *k*th singular value of X exceeds the α -percentile of the *k*th singular value of X_{π}

Sign-flipping also recovers the "null" by destroying correlations.

Parallel analysis for rank selection in PCA

For a larger version of the same problem, i.e., bigger n, p:

Signflip PA also provides a good estimate of the noise spectrum.

Recall: $\varepsilon_{ij} \stackrel{ind}{\sim} \mathcal{N}(0, \omega_i^2/n)$, 90% have $\omega_i^2 = 0.4$, 10% have $\omega_i^2 = 1$.

Permutation shrinks the noise spectrum, leading to overselection.

Recall: $\varepsilon_{ij} \stackrel{ind}{\sim} \mathcal{N}(0, \omega_i^2/n)$, 90% have $\omega_i^2 = 0.4$, 10% have $\omega_i^2 = 1$.

Signflips preserve the noise spectrum (in distribution).

Recall: $\varepsilon_{ij} \stackrel{ind}{\sim} \mathcal{N}(0, \omega_i^2/n)$, 90% have $\omega_i^2 = 0.4$, 10% have $\omega_i^2 = 1$.

Preserving the noise distribution with signflips addresses the overselection of permutation.

Work with: Thomas Zhang, George Linderman, Yuval Kluger (Yale) Question: how to select rank for single-cell RNA sequencing data? Challenge: data does not (readily) fit our signal + noise setups.

Work with: Thomas Zhang, George Linderman, Yuval Kluger (Yale) Question: how to select rank for single-cell RNA sequencing data? Challenge: data does not (readily) fit our signal + noise setups.

Model: *n* samples are drawn independently from a multinomial

 $x_i \stackrel{ind}{\sim}$ Multinomial $(s_i, k_i),$

where $S = (s_1, \ldots, s_n)^{\top}$ is row-stochastic and low-rank.

Work with: Thomas Zhang, George Linderman, Yuval Kluger (Yale) Question: how to select rank for single-cell RNA sequencing data? Challenge: data does not (readily) fit our signal + noise setups.

Model: n samples are drawn independently from a multinomial

 $x_i \stackrel{ind}{\sim}$ Multinomial (s_i, k_i) ,

where $S = (s_1, \ldots, s_n)^{\top}$ is row-stochastic and low-rank. Writing it in a signal + noise form

$$X = S + (X - S) = S + N,$$

where N = X - S is centered (since $\mathbb{E}X = S$), but has dep. entries.

Work with: Thomas Zhang, George Linderman, Yuval Kluger (Yale) Question: how to select rank for single-cell RNA sequencing data? Challenge: data does not (readily) fit our signal + noise setups.

Model: n samples are drawn independently from a multinomial

 $x_i \stackrel{ind}{\sim}$ Multinomial (s_i, k_i) ,

where $S = (s_1, \ldots, s_n)^{\top}$ is row-stochastic and low-rank. Writing it in a signal + noise form

$$X = S + (X - S) = S + N,$$

where N = X - S is centered (since $\mathbb{E}X = S$), but has dep. entries.

Ongoing work: how do our insights about PA apply here?

Prelim experiment: rank-10 S matrix, diverse total count rates, ...

Prelim experiment: rank-10 S matrix, diverse total count rates, ...

Prelim experiment: rank-10 S matrix, diverse total count rates, ...

Permutations seem to shrink the noise spectrum sometimes and signflips seem to preserve them...

Prelim experiment: rank-10 S matrix, diverse total count rates, ...

Permutations seem to shrink the noise spectrum sometimes and signflips seem to preserve them...

Ongoing: theoretical analysis/characterization - how to deal with the dependence among noise entries?

Conclusions

Today:

- explaination for how parallel analysis works using insights/tools from random matrix theory
- some theoretical guarantees/characterization for parallel analysis
- signflip variant to handle alternative noise models
- preliminary work on applications to scRNAseq

Ongoing:

- characterization/analysis of signflip parallel analysis
- characterization of behavior under multinomial models
- application of similar ideas to other models?
- more evaluation in real data

Today:

- explaination for how parallel analysis works using insights/tools from random matrix theory
- some theoretical guarantees/characterization for parallel analysis
- signflip variant to handle alternative noise models
- preliminary work on applications to scRNAseq

Ongoing:

- characterization/analysis of signflip parallel analysis
- characterization of behavior under multinomial models
- application of similar ideas to other models?
- more evaluation in real data

Thanks!